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Chapter 1

Verjetnost

1.1 Uvod

V vsakdanjem zivljenju se nenehno sreCujemo z negotovostjo in variabil-
nostjo. Ali bo jutri dezevalo? Kaksen bo dobicek podjetja v prihodnjem
cetrtletju? Kaksen je uc¢inek novega zdravila pri zdravljenju dolo¢ene bolezni?
Tezave, ki vklju¢ujejo negotovost, so v sredis¢u zanimanja verjetnostne teorije.

Verjetnost je matematicni okvir, ki omogocéa analizo nakljuénih pojavov.
Sluzi kot temelj za statistiko, disciplino, ki omogoca sklepanje na podlagi
podatkov. Statistika in verjetnost sta tesno povezani: statistika uporablja
orodja verjetnosti, da bi naredila sklepne postopke, medtem ko se verjetnost
ukvarja z modeliranjem naklju¢nih poskusov.

V tem poglavju bomo uvedli osnovne pojme verjetnosti. Najprej bomo
opisali vzoréne prostore in dogodke, nato pa formalizirali pojmovanje verjet-
nostnih mer. Kasneje bomo razvili osnovne metode za racunanje verjetnosti,
ki vkljuCujejo kombinatoricne principe, pogojno verjetnost in neodvisnost
dogodkov. Na koncu bomo nakazali, kako se te ideje uporabljajo v statistiki
in drugih podrocjih znanosti.

1.2 Vzorcni prostori

Pri obravnavi negotovih pojavov za¢nemo z natanc¢no dolo¢itvijo vseh moznih
izidov, ki jih lahko dobimo pri nakljuénem poskusu. Mnozico vseh moznih
izidov imenujemo wvzorcéni prostor in jo obi¢ajno oznac¢imo s ).

Primer 1.2.1. Ce vrzemo kovanec, sta mozna izida grb (G) ali cifra (C).
Torej je vzoréni prostor Q = {G,C}.
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Primer 1.2.2. Ce vrzemo standardno Seststransko kocko, so mozni izidi
cela stevila od 1 do 6. Torej je vzoréni prostor Q = {1,2,3,4,5,6}.

Primer 1.2.3. Ce opazujemo ¢as (v minutah), ki ga potnik ¢aka na avtobus,
je vzoréni prostor 2 = [0, 00), ker so mozne vse nenegativne realne vrednosti.

Vzoréni prostori so lahko:
¢ diskretni, c¢e je vseh moznih izidov konc¢no ali Stevno neskonc¢no,

e zvezni, ¢e so mozni izidi predstavljeni s to¢kami na realni osi oziroma
na uniji intervalov.
Dogodki

Definicija 1.2.4. Dogodek je poljubna podmnozica vzorénega prostora 2.
Dogodek A C 2 se zgodi, ¢e je dejanski izid naklju¢nega poskusa element
mnozice A.

Primer 1.2.5. Pri metu kocke je dogodek »pade sodo Stevilo« mmnozica

A =1{2,4,6}. Ce pade 4, re¢emo, da je dogodek nastopil.

Operacije na dogodkih

Ker so dogodki mnozice, lahko z njimi izvajamo obicajne mnozi¢ne operacije:

e Unija: AUB={w € Q:we€ Aaliw € B}. To je dogodek, da se
zgodi A ali B (ali oba).

e Presek: ANB={weQ:we Ainw e B}. To je dogodek, da se
zgodita A in B hkrati.

o« Komplement: A° = {w € Q:w ¢ A}. To je dogodek, da se A ne
zgodi.

o Razlika: A\B={weN:weAinw ¢ B}. To je dogodek, da se
zgodi A, a ne B.

Primer 1.2.6. Naj bo Q = {1,2,3,4,5,6} pri metu kocke. Ce je A =
{2,4,6} (soda stevila) in B = {1,2,3} (stevila < 3), potem:

AUB={1,2,3,4,6}, ANB={2}, A°={1,3,5}, A\B={4,6}.
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Posebni dogodki
e Gotov dogodek: A =, ki se vedno zgodi.

o Nemogo¢ dogodek: A = (), ki se nikoli ne zgodi.

o Elementarni dogodek: A = {w} vsebuje natanko en izid.

Disjunktni dogodki

Dogodka A in B sta nezdruzljiva (disjunktna), ¢e je AN B = (). Takrat se
ne moreta zgoditi hkrati.

Zakoni za mnoZice

Operacije z dogodki zados¢ajo naslednjim zakonitostim (za vse dogodke
A, B,C):

« Komutativnost:

AUB=BUA, ANB=BnNA.

¢ Asociativnost:

(AUB)UC =AU (BUC), (ANB)NC=AN(BNQO).

¢ Distributivnost:

AN(BUC) = (ANB)U(ANC), AU(BNC)=(AUB)N(AUQC).

De Morganova zakona

Za vsaka dogodka A in B veljata pravili:
(AUB)° = A°N B¢, (AN B)° = A°U B-.

Primer 1.2.7. Ce A pomeni »pade soda Stevilka«, B pa »pade Stevilo
vecje od 4«, potem AU B pomeni »pade soda Stevilka ali Stevilka vecja od
4«. Komplement dogodka je »pade liha Stevilka, ki ni vecja od 4«, kar je
mnozica {1,3}. Po De Morganovem zakonu je to enako kot AN B€.
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1.3 Verjetnost

Ko imamo definiran vzoréni prostor €2 in dogodke kot njegove podmnozice,
zelimo tem dogodkom prirediti stevilske vrednosti, ki odrazajo njihovo ver-
jetnost. To formaliziramo z uvedbo verjetnostne preslikave (ali na kratko
verjetnosti).

Definicija 1.3.1. Verjetnost je preslikava
P:F —0,1],
kjer je F druzina podmnozic vzorénega prostora €2, za katero veljajo nasled-
nji aksiomi:
1. P(Q) =1,
2. Za vsak dogodek A € F velja 0 < P(A) <1,
3. Ce sta A in B nezdruzljiva dogodka (AN B = (), potem

P(AUB) = P(A)+ P(B).
Izpeljane lastnosti verjetnosti
Iz zgornjih treh aksiomov lahko izpeljemo ve¢ uporabnih zakonitosti.

1. Verjetnost nemogocega dogodka. Ker velja P(2) =1 in QU = Q,
dobimo

1=P(Q)=PQuUd) = P(Q)+ P(0),
od tod P(0) = 0.
2. Komplement dogodka. Za vsak dogodek A velja = AU A° in
AN A =1(. Po aksiomu aditivnosti:

P(Q) = P(AU A°) = P(A) + P(A°).
Ker je P(Q2) = 1, dobimo

P(A°) =1— P(A).
3. Monotoniénost. Ce je A C B, potem velja B = AU (B \ A) in
AN (B\ A) =0. Torej
P(B)=P(A)+ P(B\ A) > P(A),

saj je P(B\ A) > 0.
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4. Formula za unijo dveh dogodkov. Za poljubna A, B velja
AUB=(A\B)U(B\A)U(ANB),
pri ¢emer so mnozice na desni paroma disjunktne. Torej
P(AUB)=P(A\B)+P(B\ A)+ P(ANB).

Ker velja P(A) = P(A\ B)+ P(ANB) in P(B) = P(B\ A) + P(AN B),
sledi
P(AuB)=P(A)+ P(B)— P(ANB).

Te lastnosti se uporabljajo pri prakti¢nem racunanju verjetnosti.

Primer 1.3.2 (Klasi¢na definicija). Ce je vzoréni prostor konéen in so vsi
izidi enako verjetni, potem je verjetnost dogodka A enaka

_ Al

P(A) = qr

1.4 Racunanje verjetnosti: kombinatoricne metode

Pri obravnavi diskretnih vzorénih prostorov, kjer imajo vsi izidi enako ver-
jetnost, lahko verjetnost dogodka A izracunamo kot

_ Al

P(A) = qr

Zato je pogosto najpomembnejsa naloga presteti stevilo elementov v 2 in v
A. V ta namen uporabljamo osnovna kombinatori¢na pravila.

1.4.1 Nacelo mnozZenja

Ce lahko neko opravilo izvedemo v nq razli¢nih na¢inih, drugo v no nacinih,
in tako naprej do ny, potem lahko celoten postopek izvedemo na

ny-ng- ... Nk
nacinov.

Primer 1.4.1. Ce lahko za geslo izberemo eno ¢rko (25 moznosti) in eno
stevilko (10 moznosti), potem je vseh gesel 25 - 10 = 250.



8 CHAPTER 1. VERJETNOST

1.4.2 Permutacije in variacije

Permutacija je urejen razpored vseh n elementov. Stevilo vseh permutacij
mnozice n elementov je

nl=n-(n—1)-...-2-1.

Primer 1.4.2. Koliko razlicnih nacinov je, da razporedimo 5 knjig na
polico? Odgovor: 5! = 120.

Ce izmed n elementov izberemo k in jih uredimo v vrstnem redu, govo-
rimo o wvariacijah brez ponavljanja:

n!
(n— k)

Primer 1.4.3. Izmed 10 kandidatov zelimo izbrati predsednika, podpredsed-
nika in tajnika. Stevilo moznosti je

10!

1.4.3 Kombinacije

Ce izmed n elementov izberemo k, pri ¢emer vrstni red ni pomemben, gov-
orimo o kombinacijah. Njihovo Stevilo je

n n!
(k) T kl(n— k)

Primer 1.4.4. Izmed 10 kandidatov zelimo izbrati 3 ¢lane odbora, brez
razlikovanja po funkcijah. Stevilo moznosti je

10
= 120.

1.4.4 Binomski koeficienti in binomska formula

Binomski koeficient (Z) ima naravno interpretacijo: stevilo podmnozic z k
elementi v n-¢lanski mnozici.

Izrek 1.4.5 (Binomska formula). Za vsako naravno stevilo n velja

@+ =3 (Z) Sy

k=0
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Dokaz. Razvoj (z + y)™ predstavlja produkt n faktorjev, v vsakem faktorju
lahko izberemo z ali y. Ce izberemo natanko k-krat z in (n — k)-krat g,
dobimo ¢len z*y"~*. Stevilo vseh takih izbir je (}). Sestevek vseh takih
¢lenov da formulo. O

Primer 1.4.6. Za n = 3 imamo
(z +y)° = 2® + 32y + 3ay” + 7,
kar ustreza (g) =1, (‘;’) =3, @) = 3, (g) - 1.

Primer 1.4.7 (Hipergeometrijska verjetnost). Naj bo N velikost populacije,
od tega je M elementov posebnega tipa (npr. »neustreznih«) in N — M
elementov drugega tipa (npr. »ustreznih«). Ce nakljuéno vzamemo vzorec
velikosti n brez vracanja, je verjetnost, da bo v vzorcu natanko k elementov
posebnega tipa, enaka

P(X =k)=-RIn=k’

Konkretni primer hipergeometrojske verjetnosti: V posiljki N = 100
artiklov je M = 10 neustreznih in 90 ustreznih. Ce vzamemo vzorec n = 5
artiklov brez vracanja, je verjetnost, da bo natanko k = 2 neustrezna, enaka

(10) (90)
P(X =2) = ~23~.
(5)
Tukaj stevec predstavlja stevilo nacinov, kako izmed 10 neustreznih artiklov

izberemo 2, hkrati pa izmed 90 ustreznih Se 3, imenovalec pa stevilo vseh
moznih vzorcev velikosti 5 izmed 100 artiklov.

1.4.5 Multinomski koeficienti in formula(to bomo kasneje)

Stevilo nacinov, kako lahko n objektov razdelimo v m razredov, tako da jih
je v i-tem razredu natanko k; (i =1,...,min k; +---+ k,, = n), je dano z
multinomskim koeficientom:

" L
k17k27---,km _kl'kQ'km'

Izrek 1.4.8 (Multinomska formula). Za vsako naravno stevilo n velja

n ki K km
(r1+ w24+ ap)" = Z <k: k L >$119522"'96m~
k‘1++k’m:n 1,2y vm
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Primer 1.4.9. Za n = 3, m = 3 imamo
(x+y+2)° =23 +y3 + 23+ 322y + 3222+ 322+ 3y 2 + 3222 + 322y + 62y

Primer 1.4.10 (Razdelitev v tri skupine). Naj bo n = 8 Studentov, ki jih
zelimo razdeliti v tri skupine: prvi skupini dodelimo ky = 3 Studente, drugi
ko = 3, in tretji k3 = 2. Stevilo vseh moznih razporeditev je

8 8l
(3,3,2) - 313121 560.

Primer 1.4.11 (Deljenje kart igralcem). Naj imamo 12 kart in 4 igralce.
Vsak igralec dobi 3 karte. Stevilo razliénih razdelitev je

12 12!
(3,3,3,3> = Si313131 = 369600,

Primer 1.4.12 (Barvne kroglice v skatle). Naj imamo 15 kroglic: 6 rdecih,
5 modrih in 4 zelene. Stevilo razli¢nih naéinov razvrstitve v tri razrede je

15 15!
(6, 5,4> 615! 4! 612600

1.5 Pogojna verjetnost

Véasih nas zanima verjetnost dogodka pod pogojem, da vemo, da se je zgodil
drug dogodek.

Definicija 1.5.1. Naj bosta A in B dogodka v vzor¢nem prostoru €. Pogo-
jna verjetnost dogodka B glede na dogodek A je definirana kot

P(ANB)

P(BIA) = 55

¢e je P(A) > 0.

Primeri iz vsakdanjega zZivljenja

Primer 1.5.2 (Medicinski test). Ce vemo, da je oseba bolna (A), nas zan-
ima verjetnost, da bo test pozitiven (B). Pogojna verjetnost je P(B|A) in
jo imenujemo obcutljivost testa.

Primer 1.5.3 (Prometni zastoj). Verjetnost, da bomo zamudili na sestanek
(B), je velja, ¢e vemo, da dezuje (A). Pogojna verjetnost P(B|A) odraza
vpliv vremena na zamude.

Primer 1.5.4 (Sportna napoved). Verjetnost, da bo ekipa zmagala (B), se
spremeni, ¢e vemo, da igra na domacem igriséu (A).
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Zakon mnoZenja verjetnosti

Iz definicije sledi pomembna zveza:
P(ANB)=P(A)P(B|A) = P(B) P(A|B).

Ta zakon omogoca racunanje presekov verjetnosti preko pogojnih verjet-
nosti.

Primer 1.5.5. V vreci so tri rdece in ena modra kroglica. Izberemo dve
kroglici brez vracanja. Kaksna je verjetnost, da sta obe rdeci? Naj bosta
R; in Rs dogodka, da je na prvem oziroma drugem zrebu izzrebana rdeca
kroglica. Po pravilu mnozenja velja

P(R1 N RQ) = P(Rl)P(RQ ’ Rl).

Ocitno je

3

=7

in ¢e je bila pri prvem zZrebu odstranjena ena rdeca kroglica, ostaneta dve
rdeci in ena modra. Zato

P(Ry)

P(Ry | Ry) = —.

Wil

Sledi 5 9 )
P ==
(R1N Ry) 1373

Hitro kombinatori¢no preverjanje da enak rezultat:
D _3_1

P(oba rdeca) = (T2) =57

N

Opazimo, da dogodka R; in Rp nista neodvisna; zato je pogojni korak
bistven.

Zakon popolne verjetnosti

Naj bo {A1, A, ..., A;} popoln sistem disjunktnih dogodkov (tj. A;NA; =0
zai#jin Ay U---UA, = Q). Za vsak dogodek B velja

k
P(B) = Y P(B|A;)P(4)).
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Primer 1.5.6. V navezavi na Primer 1.5.5: kaksna je verjetnost, da je na
drugem zrebu izzrebana rdeca kroglica? Pravilni rezultat dobimo z zakonom
totalne verjetnosti:

P(Rg) = P(RQ ‘ Rl)P(Rl) + P(R2 | Bl>P(Bl) =

+1-

1 3
4 4

Wl o
e~ w

kjer By oznacuje dogodek, da je na prvem zrebu izzrebana modra kroglica.

Bayesovo pravilo
Bayesovo pravilo:

P(B|A;)P(A;)
SF_ P(B|A;)P(A))

P(A}|B) =

Primer 1.5.7. Poligrafski testi (t. i. detektorji lazi) se pogosto rutinsko
izvajajo pri zaposlenih ali kandidatih za zaposlitev na obcutljivih delovnih
mestih. Naj bo + dogodek, da je poligrafski rezultat pozitiven, kar pomeni,
da preiskovanec laze; naj bo R dogodek, da preiskovanec govori resnico; in
L dogodek, da preiskovanec laze.

Po raziskavah o zanesljivosti poligrafov (Gastwirth, 1987) velja:

P(+ | L) = 0.88,

od koder sledi, da je
P(—|L)=0.12.

Prav tako velja
P(—| R)=0.86,

od koder sledi
P(+ | R)=0.14.

7 besedami: Ce oseba laze, je verjetnost, da bo to zaznal poligraf, enaka
0.88, medtem ko, ¢e oseba govori resnico, poligraf z verjetnostjo 0.86 pokaze,
da govori resnico.

Predpostavimo sedaj, da se poligrafski testi rutinsko uporabljajo za varnos-
tno preverjanje zaposlenih, in da ima pri dolo¢enem vprasanju velika vecina
preiskovancev nobenega razloga za laganje, tako da

P(R)=0.99,  P(L)=0.01.
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Ce preiskovanec pri testu dobi pozitiven rezultat, nas zanima, kaksna
je verjetnost, da je poligraf v resnici napacen in da oseba dejansko govori
resnico. To verjetnost lahko ocenimo z Bayesovim pravilom:

P(+ | R)P(R) (0.14)(0.99)

P(R[+) = P(+ |R)P(R)+ P(+ | L)P(L) ~ (0.14)(0.99) + (0.88)(0.01) 0.94.

Torej bo pri preverjanju te populacije, v kateri je vec¢ina ljudi nedolznih,
kar 94% pozitivnih rezultatov poligrafa napacnih. Vecina tistih, ki bodo
zaradi poligrafskega rezultata osumljeni, bo v resnici nedolznih. Ta primer
ponazarja eno izmed nevarnosti uporabe postopkov mnozi¢nega preverjanja
v velikih populacijah.

Sklep

Pogojna verjetnost, zakon popolne verjetnosti in Bayesovo pravilo so klju¢ni
pojmi, ki omogocajo sklepanje v negotovih situacijah, od medicinske diag-
nostike do zanesljivosti naprav in strojnega ucenja.

1.6 Neodvisnost

Pojem neodvisnosti opisuje situacije, ko pojav enega dogodka nima nobenega
vpliva na verjetnost drugega.

Definicija 1.6.1. Dogodka A in B sta neodvisna, ¢e velja
P(AnB)=P(A)- P(B).
Ekivalentno lahko re¢emo, da sta A in B neodvisna, ¢e
P(B|A) = P(B) ali P(A|B)= P(A).

Primer 1.6.2. Iz paketa kart nakljuéno izberemo eno karto. Naj bo A
dogodek, da je karta as, in D dogodek, da je karta karo.

Ce vemo, da je karta as, nam to ne pove nicesar o njenem znaku. For-
malno lahko preverimo, da sta dogodka neodvisna.

Velja
4 1 1
P(D

R Wy
Poleg tega je AN D dogodek, da je izbrana karta karo as, zato

P(A)

P(AND) = 5i2
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PPD) = (35) (3) = 5

sta dogodka A in D dejansko neodvisna.

Ker pa je

Neodvisnost ve¢ dogodkov

Dogodki A1, Ao, ..., A, so medsebojno neodvisni, ¢e za vsako podmnozico
{i1,12,...,ix} indeksov velja

P(Ay N A 0N Ay ) = P(Aiy) - P(As) -~ P(Aiy)-

Primer 1.6.3 (Trije meti kovanca). Pri treh zaporednih metih kovanca
so dogodki »prvi met je grb«, »drugi met je grb« in »tretji met je grb«
medsebojno neodvisni, saj je verjetnost preseka enaka produktu posameznih
verjetnosti.

Opozorilo: Neodvisnost # disjunktnost

- Ce sta A in B disjunktna (AN B = (), potem velja P(ANB) = 0. - Ce sta
hkrati neodvisna, bi morali imeti P(AN B) = P(A)P(B) = 0. To je moZno
samo, ¢e je P(A) =0 ali P(B) =0.

Primer 1.6.4. Pri metu kocke naj bo A = {1} in B = {2}. Dogodka sta
disjunktna, nista pa neodvisna, ker

P(ANB) =0+ P(A)P(B) = 5.

Lastnosti neodvisnosti
Ce sta A in B neodvisna, potem veljajo:
e A in B¢ sta neodvisna,
e A€ in B sta neodvisna,
o A€ in B¢ sta neodvisna.
Oris. Ce je P(AN B) = P(A)P(B), potem velja
P(ANnB°) =P(A)— P(ANnB)=P(A)(1 - P(B)) = P(A)P(B°).

Podobno se pokaze za ostale primere. O
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Sklep

Neodvisnost je kljuéna lastnost v verjetnostni teoriji in statistiki. Omogoca
enostavnejse racunanje verjetnosti in je osnova za mnoge modele, npr. pri
anketah (neodvisni odgovori), strojnem ucenju in teoriji informacij.

1.7 Zaklju¢ne opombe

V tem poglavju smo spoznali osnovne pojme verjetnosti: vzoréne prostore,
dogodke, verjetnostne mere, kombinatoriéne metode, pogojno verjetnost in
neodvisnost. Ti koncepti tvorijo temelj za celotno teorijo verjetnosti in nji-
hovo poznavanje je kljuéno za razumevanje statistike.

Statistika gradi na verjetnosti: iz opazovanih podatkov sklepamo o pop-
ulacijah in procesih, ki so inherentno nakljuéni. Brez osnovnega znanja
verjetnosti bi bilo nemogoce oblikovati zanesljive metode sklepanja, ocenje-
vanja in testiranja hipotez.

V naslednjih poglavjih bomo te ideje razsirili na obravnavo slucajnih
spremenljivk in njihovih porazdelitev, kar bo omogocilo formalno obravnavo
podatkov v kvantitativnih znanstvenih disciplinah.

1.8 Naloge

1. Vrzemo dve kocki. Dolocite verjetnost, da je vsota pik enaka 7.

2. Izmed 20 studentov jih 12 zna programirati v Pythonu. Naklju¢no
izberemo 3. Kaksna je verjetnost, da vsi znajo programirati?

3. V podjetju je 40 % zaposlenih zensk. Ce naklju¢no izberemo 5 oseb,
kaksna je verjetnost, da bodo natanko 3 Zenske?

4. V skatli je 6 rdecih in 4 modre kroglice. Izberemo 2. Dolocite verjet-
nost, da sta obe rdedi.

5. Dve karti izvleCemo zaporedoma brez vracanja iz kompleta 52 kart.
Dolocite verjetnost, da sta obe asi.

6. V podjetju testirajo nov izdelek. Pretekle izkusnje kazejo, da je 95
% izdelkov uspesnih, ¢e so pri testiranju prejeli dobre ocene, 60 %
uspesnih, ¢e so prejeli srednje ocene, in 10 % uspesnih, ¢e so prejeli
slabe ocene. Ce vemo, da je izdelek pri testiranju prejel dobre ocene,
kaksna je verjetnost, da bo uspesen na trgu?



16 CHAPTER 1. VERJETNOST

7. Dokazujte, da za poljubna dogodka A in B velja

P(AUB) = P(A) + P(B) — P(AN B).

8. V podjetju se 1 % izdelkov izkaze za neustrezne. Ce pregledamo 100
izdelkov, ocenite verjetnost, da bo natanko en neustrezen.



Chapter 2

Slucajne spremenljivke

2.1 Diskretne slucajne spremenljivke

Slucajna spremenljivka je v bistvu naklju¢no stevilo. Za motivacijo si pogle-
jmo primer.

Kovanec vrzemo trikrat in opazujemo zaporedje grbov (h) in cifer (t).
Vzoréni prostor je

Q = {hhh, hht, htt, hth, ttt, tth, thh, tht}.
Primeri slucajnih spremenljivk, definiranih na €2, so:
1. skupno stevilo grbov,
2. skupno stevilo cifer,
3. stevilo grbov minus stevilo cifer.

Vsaka od teh funkcij doloc¢a pravilo, ki vsakemu izidu w € € priredi
realno stevilo. Ker je izid v 2 nakljucen, je tudi prirejeno stevilo nakljucno.

Definicija 2.1.1. Na splosno je slucajna spremenljivka preslikava iz v

realna Stevila:
X:0—=R.

Obicajno slucajne spremenljivke oznacujemo z velikimi ¢rkami iz konca
abecede (npr. XY, 7).

Primer 2.1.2. Naj bo X skupno stevilo grbov v opisanem poskusu (trikratni
met kovanca). Takrat je X slucajna spremenljivka, ki lahko zavzame vred-
nosti 0,1, 2, 3.

17
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Definicija 2.1.3. Diskretna slucajna spremenljivka je slucajna spremenljivka,
ki lahko zavzame le kon¢no ali kve¢jemu stevno neskonéno mnogo vrednosti.

Primer 2.1.4. Prejsnja slucajna spremenljivka X (skupno stevilo grbov v
treh metih) je diskretna, saj so mozne vrednosti le 0, 1,2, 3.

Za primer slucajne spremenljivke s Stevno neskonéno mnogo moznimi
vrednostmi si poglejmo poskus: kovanec mecemo, dokler ne pade prvo grb,
in definiramo

Y = stevilo metov do prve grbe.

Mozne vrednosti so 1,2,3,....
Na splosno pravimo, da je mnozica stevno neskoné¢na, ¢e jo lahko postavimo
v bijektivno korespondenco z mnozico celih stevil.

Primer 2.1.5. Ce je kovanec posten, ima vsak izid iz © zgoraj verjetnost
%. Tako lahko izracunamo:

P(X=0=4, PX=1)=3 PX=2=3% PX=3=4%.

ool

Na splosno verjetnostna preslikava na vzorénem prostoru doloca ver-
jetnosti razli¢nih vrednosti slucajne spremenljivke. Ce so mozne vrednosti
xr1,Z2,..., potem obstaja funkcija p, da velja

p(z;) = P(X = x;), Zp(wz) =1.

Funkcija p se imenuje gostota (tudi frekvencna funkcija) slucajne spre-
menljivke X.

Definicija 2.1.6. Porazdelitvena funkcija (cdf) sluéajne spremenljivke X
je definirana kot

F(z)=P(X <ux), —00 < x < 0.
Porazdelitvena funkcija je narasc¢ajoca in zadosc¢a pogojema

lim F(z)=0, lim F(z)=1.

T—r—00 T—00

Primer 2.1.7. Za sluc¢ajno spremenljivko X (stevilo grbov v treh metih
postenega kovanca) je p(x) podan z

p(0) =%, p(1) =32, p(2) =3, p(3) = 3.

Porazdelitvena funkcija F'(z) ima skoke v to¢kah = = 0,1, 2, 3, viSina skoka
pri =i pa je enaka p(i).
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Neodvisne slucajne spremenljivke

Tako kot govorimo o neodvisnosti dogodkov, lahko definiramo tudi neodvis-
nost slucajnih spremenljivk.

Definicija 2.1.8. Slucajni spremenljivki X in Y sta neodvisni, ce velja
P(X =x;,Y =y;) = P(X =2;) P(Y =y;) zavsedi,j.

Primer 2.1.9 (Dva meta kovanca). Naj bo X = 1, ¢e je pri prvem metu
grb (in 0 sicer), ter Y = 1, ¢e je pri drugem metu grb (in 0 sicer). Potem je

PX=1Yy=1)=%3=1.1

D=

in podobno za vse ostale kombinacije. Torej sta X in Y neodvisni.

Primer 2.1.10 (Met kovanca trikrat). Naj bo X = »stevilo grbov v prvih
dveh metih«, Y = »stevilo grbov v zadnjih dveh metih«, pri treh metih
postenega kovanca.

Mozne vrednostiso X € {0,1,2}inY € {0,1,2}. Skupno vzor¢ni prostor
vsebuje 23 = 8 enako verjetnih izidov.

Izracunajmo nekaj verjetnosti:

Toda
P(X =2,Y = 2) = P(prvi dve grb in zadnji dve grb) = P(hhh) = £.
Ce bi bila X in Y neodvisni, bi moralo veljati
P(X=2Y=2=P(X=2)PY=2)=1-1=1%.
Ker pa v resnici velja P(X = 2)Y = 2) = % #+ 1—16, spremenljivki X in Y
nista neodvisni.
2.1.1 Bernoullijeve slucajne spremenljivke

Definicija 2.1.11. Bernoullijev poskus je poskus, ki ima samo dva mozna
izida: uspeh in neuspeh.

Primer 2.1.12. Met kovanca: uspeh = pade grb, neuspeh = pade cifra.
Test bolezni: uspeh = pozitiven test, neuspeh = negativen test.
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Definicija 2.1.13. Bernoullijeva slucajna spremenljivka X je definirana kot
X = {1, ¢e nastopi uspeh,
0, c¢e nastopi neuspeh.
Ce je p = P(X = 1) verjetnost uspeha, potem velja
P(X=0)=1-p, P(X=1)=p.

Primer 2.1.14. Ce je verjetnost, da bo test pravilno zaznal bolezen p =
0.98, potem je Bernoullijeva spremenljivka X = 1, ¢e je test pozitiven, in
X =0, ¢e je negativen. Tedaj je P(X =1) =0.98, P(X =0) = 0.02.
2.1.2 Binomske slucajne spremenljivke

Zaporedje n neodvisnih Bernoullijevih poskusov z verjetnostjo uspeha p
pripelje do stevila uspehov X v teh n poskusih.

Definicija 2.1.15. Binomska slucajna spremenljivka X s parametri n in p
ima verjetnost

P(X=k) = <Z>pk(1 )k k=0,1,...,n.

Primer 2.1.16 (Spol otrok). Verjetnost, da se rodi fant, je priblizno p =
0.515. V druzini s petimi otroki naj bo X stevilo fantov. Potem

5 .
P(X =3) = (3) 0.515%0.485% ~ 0.321,

5
P(X =5)= <5>0.5155 ~ 0.036.

Povezava z Bernoullijevimi spremenljivkami. Naklju¢no spremenljivko
z binomsko porazdelitvijo lahko izrazimo kot vsoto n neodvisnih Bernoulli-
jevih spremenljivk. Ce ozna¢imo X; ~ Bern(p), i = 1,...,n, neodvisne in
vsaka predstavlja izid enega poskusa, potem velja

X=X1+Xy+- -+ X, ~ Bin(n,p).

Ta povezava je kljucna, saj omogoca razumevanje binomske porazdelitve
kot sestevka preprostih poskusov tipa »uspeh/neuspeh«.
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2.1.3 Geometrijska porazdelitev

Definicija 2.1.17. Naj bo poskus sestavljen iz neodvisnih Bernoullijevih
poskusov, pri ¢emer ima vsak poskus le dva mozna izida in verjetnost uspeha
p je enaka v vseh poskusih. Naklju¢no spremenljivko X, ki je enaka stevilu
poskusov do prvega uspesnega poskusa, imenujemo geometrijska nakljucna
spremenljivka.

Definicija 2.1.18. Gostota geometrijske spremenljivke je
P(X =z)=(1-p)*!p, x=1,2,...

Primer 2.1.19. Pri digitalnem prenosu signala je verjetnost, da je signal
slab, p = 0.1. Naj bo X stevilo prenosov do prvega slabega signala.

P(X =1)=0.1, P(X=10)=0.99"0.1~0.0387, P(X =20)=0.99'%.0.1 ~0.0135.

Pricakovana vrednost diskretne slucajne spremenljivke

Definicija 2.1.20. Ce je X diskretna sluéajna spremenljivka z gostoto p(z),
je njena pricakovana vrednost, oznacena z E(X), definirana kot

B(X) = Y aip(w)

pod pogojem, da velja

Z |zi| p(x;) < 0.

Vsote bomo podrobneje studirali v prihodnjem poglavju. Prav tako bomo
spoznali se nakaj drugih zelo pomembnih diskretnih slu¢ajnih spremenljivk,
kot so negativna binomska, hipergeometrijska in Poissonova.

2.2 Zvezne slucajne spremenljivke

Pri zveznih slucajnih spremenljivkah vlogo frekvencne funkcije prevzame
gostota verjetnosti (ali na kratko gostota) f(x), za katero velja:

fx) >0, /_O; Flz)dz = 1.

Ce je X zvezna slu¢ajna spremenljivka z gostoto f, potem za poljubna
a<b:

P(a<X<b):/bf(a:)dx.
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Porazdelitvena funkcija. Za zvezno sluc¢ajno spremenljivko X defini-
ramo porazdelitveno funkcijo

Flo) = P(X <2) = / F(u) du.
Ce je f zvezna v x, potem velja f(x) = F’(z), kar bomo e dokazali.

Enakomerna slu¢ajna spremenljivka. Enakomerna slucajna spremenljivka
na intervalu [0, 1] ima gostoto

f(x):{l, 0<z<1,

0, sicer,

) x f— 07
Fl@)={z 0<z<l,
1, 1

Normalna porazdelitvena funckija Slucajna spremenljivka X ima nor-
malno porazdelitev s parametri y in o2, e je njena gostota verjetnosti

L o (_ (x — p)?

fz) =

o 952 ), —o0o < T <00,

kjer je u € R sredina (ali povpredje ali pri¢akovana vrednost) in o2 > 0
varianca (disperzija).

V prihodnjih poglavjih bomo spoznali Sse nekatere druge zvezne slu:cajne
spremenljivke.

Kvantil, mediana in kvartili.

Definicija 2.2.1. Naj bo X zvezna slucajna spremenljivka s porazdelitveno
funkcijo F'. Za 0 < p < 1 imenujemo p-ti kvantil Stevilo x,, za katero velja

P(X <uzp) = F(xp) =p.
Ce je F strogo naras¢ajoca, je kvantil enoliéno dolo¢en kot

Ty = F_l(p).
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Posebni primeri kvantilov:
To5 je mediana, .25 je spodnji kvartil, To.75 je zgornji kvartil.
Primer 2.2.2. Naj bo porazdelitvena funkcija
F(x) =22, 0<z<1.
Inverzna funkcija je F~!(y) = VY- Sledi:
mediana = 95 = F~1(0.5) = V0.5 ~ 0.707,
spodnji kvartil = 9.5 = F~1(0.25) = v/0.25 = 0.50,

zgornji kvartil = xzg75 = F_1(0.75) = 0.75 ~ 0.866.

Pricakovana vrednost zvezne slucajne spremenljivke

Definicija 2.2.3. Ce je X zvezna slucajna spremenljivka z gostoto f(x),
potem je njena pricakovana vrednost

pod pogojem, da velja
/ |z| f(x) dx < .

Integrale bomo podrobneje studirali v prihodnjih poglavjih.

Varianca slué¢ajne spremenljivke

Definicija 2.2.4. Ce je X slu¢ajna spremenljivka s pri¢akovano vrednostjo
E(X), potem je varianca spremenljivke X definirana kot

Var(X) = B[(X - E(X))?],

pod pogojem, da pricakovana vrednost obstaja. Standardni odklon spre-
menljivke X je kvadratni koren variance.
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Chapter 3

Zaporedja in vrste

Zaporedja

Definicija 3.0.1. Zaporedje realnih stevil je predpis, ki vsakemu naravnemu
stevilu n € N priredi realno stevilo a,. Realno stevilo a,, imenujemo n-ti
¢len zaporedja, n pa indeks ¢lena a,. Zaporedje zapisemo kot a1, as, as, . ..
ali krajse {ay, }nen oziroma {a,}.

Opomba 3.0.2. Zaporedje lahko dolo¢imo eksplicitno (s predpisom za splosni
¢len ay,) ali rekurzivno (s predpisom, ki izrazi a,, z nekaj predhodnimi ¢leni
An_1,0n_2,...). Clene zaporedja je pogosto nazorno predstaviti kot tocke
(n,ay) v ravnini ali kot tocke a,, na Stevilski premici.

Primer 3.0.3.
o Aritmeti¢no zaporedje: an+1 = an +d in a, = a3 + (n — 1)d.
1

o Geometrijsko zaporedje: apy1 =qay in ap, = a1q™ .

e Fibonacci: a1 =1, ao =1, an = Gn_1 + Gn_o.

Monotonost in omejenost

Definicija 3.0.4. Zaporedje {a,} je narascajoce, ¢e a1 > ay za vsak n €
N, in strogo narascajoce, ¢e an+1 > an. Podobno je padajoce, ¢e ant1 < ap,
in strogo padajoce, ¢e any1 < ay. Zaporedje je monotono, Ce je narascajoce
ali padajoce.

Definicija 3.0.5. Zaporedje {a,} je navzgor omejeno, ¢e obstaja M € R
tako, da a,, < M za vse n; Stevilo M je (ena) zgornja meja. Navzdol omejeno

25
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je, ¢e obstaja m € R tako, da a, > m za vse n; m je (ena) spodnja meja.
Zaporedje je omejeno, e je hkrati navzgor in navzdol omejeno.

Definicija 3.0.6. Natancna zgornja meja (supremum) zaporedja je sup an,
neN
najmanjsa med vsemi njegovimi zgornjimi mejami. Natancna spodnja meja

(infimum) je inIf\I an, najvecja med vsemi spodnjimi mejami.
ne

1 1
Primer 3.0.7. Za a, = ntl =1+ — je inf, a, = 1, zaporedje je strogo
n n

padajoce in sup,, a, = a1 = 2.

Alternirajoca zaporedja

Definicija 3.0.8. Zaporedje je alternirajoce, ¢e se predznak ¢lenov izmen-
juje, tj. apant1 < 0 za vsak n.

Stekalisca in limita

Definicija 3.0.9 (Stekalisée). Stevilo A € R je stekalisce zaporedja {a,},
¢e za vsak € > 0 lezi v (A — ¢, A + €) neskonéno mnogo ¢lenov zaporedja.

Definicija 3.0.10 (Limita). Stevilo A je limita zaporedja {a,}, ¢e za vsak
e > 0 obstaja ng € N tako, da za vse n > ng velja |a, — A| < . V tem
primeru pisemo lim, - a, = A in pravimo, da je zaporedje konvergentno.
Ce takega A ni, je zaporedje divergentno.

Trditev 3.0.11. Ce lim,_oca, = A, potem je A stekalisce zaporedja in
zunaj vsake okolice (A — e, A+ €) lezi le koncno mnogo clenov.

Izrek 3.0.12. Zaporedje je konvergentno natanko tedaj, ko je omejeno in
ima natanko eno stekalisce.

Izrek 3.0.13 (Monotono konvergenéni izrek). Ce je {a,} narascajoce in
omejeno, potem konvergira in velja nh—>Holo an, = supay,. Ce je {a,} padajoce
n

in omejeno, potem konvergira in velja lim a, = inf a,.
n—oo n
Primer 3.0.14. Zaporedje
anp=2n+1, néeN,

ima c¢lene 3,5,7,9,.... To je strogo narascajoce zaporedje, ki ni navzgor
omejeno. Njegova natancna spodnja meja je

inf a,, = 3.
neN "
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Primer 3.0.15. Zaporedje

1
anp=—, neN,
n

je strogo padajoce in navzdol omejeno z 0. Velja

lim a, = 0= inf a
n—oo neN ¥’

torej je limita enaka natancni spodnji meji.
Primer 3.0.16. Zaporedje
ap = (—1)", neN,

je alternirajoce. Ni monotono in nima limite, ker se ¢leni zaporedja gibljejo
med 1 in —1. Ima pa dve stekalis¢i: —1 in 1.

Racunanje z limitami

Trditev 3.0.17. Ce sta {a,} in {b,} konvergentni, potem veljajo stan-
dardna pravila:

lim (a,+b,) = lima,+limb,, lim (ca,)=clima,, lim
n—oo n—o0 n—0o0

~ 1‘
Ce je b, # 0 za vse n in limb,, # 0, potem HILHOIO %Z B liizz

Primer 3.0.18.

(2n—1)2+1 . dn?—dn+2 4
im =lim ————=-=2.
n—oo (2n+1)(n+1) n—=02n243n+1 2

Nekaj standardnih limit

Trditev 3.0.19. Za c € R velja

hm Cn — {07 |C| < ]"

n—00 17 c= 17

Trditev 3.0.20. Za ¢ > 0 velja lim /™ = 1.
n—oo

(anby) = (limay,)(limby,).
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Stevilo e

n —-n
Definicija 3.0.21. Definiramo zaporedji a,, = (1 + %) in b, = (1 — %) .
Velja, da je a, narasc¢ajoCe in navzgor omejeno, b, padajoCe in navzdol
omejeno, zato sta konvergentni in imata isto limito:

e=lim (1+ l)n = lim (1- l)_” ~ 2.7182.

n—oo n n—oo n

Stevilo e je iracionalno.

Stevilske vrste
Definicija 3.0.22. Dano imamo neko zaporedje realnih stevil
a1,a2,a03, . ..
Kaj bi bila vsota neskonc¢no ¢lenov tega zaporedja?
Primer 3.0.23. Naj bo zaporedje dano s predpisom a, = n. Koliko je
1+2+34+4+5+...7
Primer 3.0.24. Naj bo zaporedje dano s predpisom a,, = (—1)". Koliko je
AT (D) 1+ (D) + 14 (1) +...7

Primer 3.0.25.
1+1+1—|—1+ =2
2 4 8 N

Definicija 3.0.26. Naj bo {a,} zaporedje realnih stevil. Izraz
oo
a1 +as+az+---= Zan
n=1

imenujemo stevilska vrsta, stevilo a,, pa splosni c¢len vrste.

Definicija 3.0.27. S pomocjo ¢lenov zaporedja {a,} definiramo novo za-
poredje delnih vsot {s,} s ¢leni

n
§1 = am, S2 = a1 + ag, [ERE} Snzza‘i7
=1
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Definicija 3.0.28. Vrsta > .2 a, je konvergentna, ¢e konvergira zaporedje
njenih delnih vsot {s,,}. Limito zaporedja delnih vsot imenujemo vsota vrste.
Ce vrsta ni konvergentna, pravimo, da je divergentna.

Primer 3.0.29. Preverimo konvergenco vrste

> (=)

n=1
Ker je s, = 0 za sode n in s, = —1 za lihe n, ima zaporedje delnih vsot dve
stekalisci, torej ni konvergentno in je vrsta » > ;(—1)" divergentna.
Primer 3.0.30. Izracunajmo vsoto vrste

o0

— n(n+1)

3

Ker velja

so delne vsote enake

1
=1—
n+1
Torej
lim s, =1,
n—oo
in vrsta je konvergentna z vsoto 1.
Definicija 3.0.31. Vrsto
oo
Zaq" =a+aq+ag®+ag®+...
n=0

imenujemo geometrijska vrsta.

Trditev 3.0.32. Ce je q # 1, potem je

1—q
sn—Zaq—a 1—g

Za |q| <1 je

1—¢q

> .
> aq' =
=0

Za |q| > 1 je geometrijska vrsta divergentna.
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Dokaz. Naj bo g#1in

Pomnozimo z (1 — q):

(I=@sn=al(l+g+-+¢") = (g+¢"+-+¢")] =a(l —¢").

Ker je ¢ # 1, lahko delimo z (1 — ¢) in dobimo
1— n+1
Sp=a- 7q
l—q

Ce je |q| < 1, potem lim,, ;o ¢"* = 0, zato sledi

0 .
a¢* = lim s, =a- —— = )
% n—oo 1—q ]_—q

Primer 3.0.33. Izracunajmo neskonc¢no geometrijsko vrsto
0o 1\
1;)3 (4> .
Tukaj je zacetni ¢len a = 3 in koli¢nik g = i, pri ¢emer je |q| < 1, zato vrsta

konvergira.
Po formuli za neskoncéno geometrijsko vrsto dobimo

> a
Z aq" = .
n=0

1—g¢q

Vstavimo a = 3 in ¢ = %:

e 1\" 3
Z3<> — =5 =4
n=0 4 1- 1

Zato je

Sa(1) =

n=0
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Izrek 3.0.34. Potreben, ne pa tudi zadosten, pogoj za konvergenco vrste
Y n1an je

lim a, = 0.
n—oo

Definicija 3.0.35. Vrsta

il—1+1+1+1+
—n 2 3 4 7

se imenuje harmonicna vrsta.
Trditev 3.0.36. Harmonicna vrsta je divergentna.

Opomba 3.0.37. Pri harmoni¢ni vrsti je limn_wo% = 0, vendar vrsta ni
konvergentna. Pogoj lim a,, = 0 torej ni zadosten za konvergenco vrste.

Izrek 3.0.38 (Primerjalni kriterij). Naj za vrsti Y a, in Y. b, velja 0 <
an < b, za vsak n € N.

e Ce je Y. b, konvergentna, potem je tudi 3. a, konvergentna.

e Ceje Y a, divergentna, potem je tudi > b, divergentna.
Izrek 3.0.39 (Kvocientni kriterij). Naj bo Y ay, vrsta s pozitivnimi clen, in
naj obstaja

. An+1
lim —F

n—oo an

e Cejeq <1, potem je vrsta konvergentna.
e Ce je g > 1, potem je vrsta divergentna.
e Ce je q =1, kriterij odpove.

Izrek 3.0.40 (Korenski kriterij). Naj bo > a,, vrsta s pozitivnimi cleni in
naj obstaja

A, Vi =
e Ce je g < 1, potem je vrsta konvergentna.

e Ce je q > 1, potem je vrsta divergentna.

e Cejeq=1, kriterij odpove.
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Primer 3.0.41. 1.

Splosni ¢len je

Izracunamo kvocient zaporednih ¢lenov:

= i Ol gy D g n!
1= nLHgo a o nl~>Holo 1 n—oo m nlﬁnéo n+1
n !

Ker je ¢ < 1, je vrsta **konvergentna™*.

0 |
>
on
n=1 €
Splosni ¢len je
n!
anp = 67
Izracunamo kvocient:
(n+1)!
. On41 . 1 . on+1
¢= lim = = lim e = lim =00 >1
n—oo  q, n—oo % n—oo e
e

Ker je g > 1, je vrsta **divergentna™*.

(TL+ 1)n(n+1)

n=1

n—1 n(n+1)
Gy, = )
(n + 1)

Uporabimo korenski kriterij:

Splosni ¢len je

: — S n—1 .oon—1

Ker je g < 1, je vrsta **konvergentna**.

)n+1 — 672 < 1.



33

Definicija 3.0.42. Vrsta > a, je absolutno konvergentna, ¢e je konver-
gentna vrsta > |a,|. Vrsta Y a, je pogojno konvergentna, Ce je konvergentna,
ni pa absolutno konvergentna.

Izrek 3.0.43. Vsaka absolutno konvergentna vrsta je konvergentna.
Definicija 3.0.44. Vrsta Y a, je alternirajoca, ¢e velja apan+1 < 0 za vsak
n € N.

Izrek 3.0.45 (Leibnitzov kriterij). Ce je pri alternirajoci vrsti 3 a, za-
poredje absolutnih vrednosti {|a,|} padajoce proti 0, potem je vrsta konver-
gentna.
Primer 3.0.46. Preverimo konvergentnost vrste

= (—1yt

n=1 n

Ker velja % — 0 in % monotono pada, je vrsta konvergentna.

Diskretne porazdelitve: normalizacija in matem-
aticno upanje

V tem poglavju normalizacija pomeni preverjanje, da se verjetnostna funkcija
(gostota) dejansko sesteje v 1. To je osnovni pogoj, saj mora vsota vseh
verjetnosti (pri diskretni spremenljivki) oziroma integral gostote (pri zvezni
spremenljivki) enaka 1, ker se mora dogodek z gotovostjo zgoditi v vzorénem
prostoru.

Bernoullijeva porazdelitev Bern(p)
Gostota:

5 :1’
f(z) = P B 0<p<l
1_p7 :l',':O,

Normalizacija:

Y fla)=Q1-p+p=1

z€{0,1}
Pricakovana vrednost:
E(X)= > azf(x)=0-(1-p)+1-p=p.
z€{0,1}

Opomba: Bernoullijeva porazdelitev je poseben primer binomske po-
razdelitve s parametroma n =1 in p.
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Diskretna enakomerna porazdelitev

Definicija 3.0.47. Naj bo A = {z1,x9,...,2,} koncna mnozica razli¢nih
realnih stevil. Slucajna spremenljivka X, ki zavzame vrednost vsakega x; z
enako verjetnostjo %, se imenuje diskretno enakomerno porazdeljena. Njena
porazdelitvena funkcija je

Primer 3.0.49. Met pravicne kocke: X predstavlja stevilo pik na vrzeni
kocki. Potem

1
P(sz:)za, k=1,2,3,4,5,6.
Trditev 3.0.50 (Matemati¢no upanje). Za enakomerno porazdeljeno sluca-
jno spremenljivko X na {x1,...,x,} je
E(X) = in = = *in.
; n n‘
=1 i=1
Ce so vrednosti 1,2, ..., n, potem velja
1 n+1
E(X)= 5(1+2+~-'+n): 5

kar dokazemo z indukcijo.

Primer 3.0.51. Za met kocke je pricakovano stevilo pik

14243444546

B(X) .

3.5.

Binomska porazdelitev Bin(n, p)
Gostota:
fk) = (Z)pk(l—p)n_k7 k=0,1,...,n.

Normalizacija (binomski izrek):

> (Z)p’“(l —p)" =+ (1-p)" =1

k=0
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Pricakovano vrednost:

S k(’;)p’“u —p)" ",
k=0

Opazimo identiteto k(}) = n(}_ 1) Vstavimo:

n—l 1) — (e

Zamenjajmo indeks j = k — 1:

n—1
X)=npy (” - 1>p7‘(1 _ p)(1)=
=0\ 7

Ta vsota je (p + (1 — p))"~! = 1, torej

E(X) =np.

Geometrijska porazdelitev Geom(p)

Gostota:
f(k) = (1 —p)*1p, k=12, ...

Normalizacija (geometrijska vrsta):

= oNk—1, = _oyn_ P
k;(l p) p—pmzzjo(l ) "

Pricakovano vrednost:
o0
=> k(1-
k=1

Opazimo, da je 3222, k(1 — p)*~! odvod po spremenljivki p od geometrijske
viste 302, —(1 —p)* = —1_&_p) = —}D. Ta odvod pa je enak

1

2
in tako dobimo 1 1
EX)=p —=-.
(X) 2
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Chapter 4

Funkcije, odvodi in integrali

Grafi in osnovne lastnosti
Definicija 4.0.1. Graf funkcije f : D — R, D C R, je mnozica
I(f)={(z, f(z)): x € D} CR*.

Trditev 4.0.2. Funkcija f : D — R je injektivna natanko tedaj, ko vsaka
premica vzporedna z abscisno osjo seka njen graf najvec enkrat.

Trditev 4.0.3. Funkcija f : D — R je surjektivna natanko tedaj, ko vsaka
premica vzporedna z abscisno osjo seka njen graf vsaj enkrat.

Definicija 4.0.4. Funkcija f: D — R je
o soda, ¢e f(—x) = f(x) za vsak x € D, njen graf pa je simetricen glede
na ordinatno os;
o liha, ¢e f(—x) = —f(x) za vsak x € D, njen graf pa je simetricen glede
na izhodisce.
Opomba 4.0.5. Vecina funkcij ni ne lihih ne sodih.

Primer 4.0.6. Funkcija f(z) = 2?2 je soda, saj velja f(—z) = (—x)? = 22 =
f(x). Njen graf (parabola) je simetri¢en glede na ordinatno os.

Primer 4.0.7. Funkcija f(z) = 3 je liha, saj f(—z) = (-2)3 = —23 =
—f(x). Njen graf je simetrien glede na koordinatno izhodisce.

Primer 4.0.8. Funkcija f(z) = 22 +  ni niti soda niti liha. Za f(—z) =
(—2)? 4 (—x) = 2% — z, kar ni enako ne f(z) ne —f(z).

Primer 4.0.9. Funkcija f(x) = cos(z) je soda, ker cos(—z) = cos(z).
Funkcija f(z) = sin(z) pa je liha, saj sin(—z) = —sin(z).

37
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Monotone in omejene funkcije
Definicija 4.0.10. Funkcija f: D — R, D C R, je
o narascajoca, ¢e f(x1) < f(xg) za vse x1 < x9 iz D,
o strogo narascajoca, ¢e f(x1) < f(x2) za vse x1 < x2,
» padajoca, ¢e f(x1) > f(x2) za vse x1 < xa,
o strogo padajoca, ¢e f(x1) > f(x2) za vse x1 < x3.
Funkcija je monotona, ¢e je narascajoca ali padajoca.
Definicija 4.0.11. Funkcija f : D —>VR je mavzgor omejena, Ce obstaja
M € R, daje f(x) < M za vsak z € D. Stevilo M imenujemo zgornja meja.
Podobno je navzdol omejena, ¢e obstaja m € R, da je f(x) > m za vsak
z € D.

Funkcija je omejena, Ce je hkrati navzgor in navzdol omejena.

Primer 4.0.12. Funkcija f(z) = arctan(z) je strogo narascajoca, navzgor

omejena z 5 in navzdol omejena z —3.

Inverzne funkcije

Definicija 4.0.13. Naj bo f: D — R, D C R, injektivna funkcija. Potem
obstaja inverzna funkcija f~!: f(D) — D, ki zado$éa pogoju

U f(x) =2, xeD.

Primer 4.0.14. Ce je f(z) = 2z + 3, potem dobimo y = 2z + 3, od tod
x = yT_?’ Zato je inverzna funkcija f~1(y) = %3

Opomba 4.0.15. Graf inverzne funkcije f~! dobimo tako, da graf funkcije
f prezrcalimo cez simetralo lihih kvadrantov y = x.
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Polinomi in racionalne funkcije
Definicija 4.0.16. Polinom stopnje n je funkcija oblike

p(x) = apx™ + an_12" P -+ az+ag, an, #0.
Definicijsko obmocje polinoma je celotna mnozica R.

Izrek 4.0.17 (Osnovni izrek algebre). Polinom stopnje n ima natanko n
kompleksnih nicel, pri cemer so nekatere lahko veckratne.

Primer 4.0.18. Polinom p(z) = —23 4+ 3z + 2 ima ni¢le z = -2, z = 1 in
x =7. Ker je polinom tretje stopnje, ima natanko tri realne nicle.

Definicija 4.0.19. Racionalna funkcija je funkcija oblike
p(x
fla) = 22

q(x)
kjer sta p in ¢ polinoma in ¢(z) # 0. Definicijsko obmocje racionalne funkcije
je R\{z : q(x) = 0}.

Primer 4.0.20. Funkcija

)

2
z*(z +1)
ima nicle pri x = 0 in x = —1, pole pa pri z = £2.

Eksponentne in logaritemske funkcije

Definicija 4.0.21. Za a > 0, a # 1, je eksponentna funkcija
f(z) =a".

Najpogosteje uporabljamo osnovo e, tj. f(z) = e*.

Opomba 4.0.22. Eksponentna funkcija je strogo monotona: za a > 1
narasca, za 0 < a < 1 pada. Zaloga vrednosti je vedno (0, c0).

Definicija 4.0.23. Logaritemska funkcija je inverzna eksponentni funkciji
x — a” in jo oznac¢imo

flx) =log,(z), x>0,
Za osnovo a = e dobimo naravni logaritem f(x) = logx.

Primer 4.0.24. Velja log,(1) =0, log,(a) = 1. Na primer, log,(8) = 3.
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Trigonometri¢cne funkcije funkcije

Definicija 4.0.25. Osnovne trigonometricne funkcije so sinus, kosinus, tan-
gens in kotangens. Njihovo definicijsko obmocje razsirimo na vsa realna
stevila, razen tam, kjer so imenovalci enaki 0.

Primer 4.0.26. Velja identiteta sin?z + cos?z = 1, pa tudi tan’z + 1 =
1
cos?zx”

Definicija 4.0.27. Inverzne trigonometri¢ne funkcije imenujemo ciklometricne
funkcije:
arcsin, arccos, arctan.

Definirane so na ustreznih intervalih, kjer so sinus, kosinus in tangens injek-
tivni.

glejte prosojnice —

Zveznost funkcij

Definicija 4.0.28 (Zveznost v tocki). Naj bo f: D — R, D C R. Funkcija
f je zvezna v tocki xg € D, Ce

lim f(z) = f(zo)  (ti. lim f(2) = f(wo) = lim f(x)).

T—T0 zTxo xlxo
Pravimo, da je f zvezna na D, Ce je zvezna v vsaki tocki iz D.

Trditev 4.0.29 (Zamenjava limita in zvezne funkcije). Ce je g zvezna v
tocki lim f(z), potem
Tr—xQ

lim o /() = o Jim (o).

T—T0 T—T0

Racunska pravila za zvezne funkcije. Ce sta f in g zvezni (na istem
obmodju definicije), potem so zvezne tudi:

f+g, [-g ;(kjerg%()% gof.

bo f : [a,b] — R zvezna in naj bo f(a) f(b) < 0. Tedaj obstaja xo € |a,b]
tako, da je f(xo) = 0.
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Trditev 4.0.31 (Omejenost na zaprtem intervalu). Zvezna funkcija f :
[a,b] = R je omejena.

Opomba 4.0.32. Ce interval ni zaprt, to ni nujno res. Na primer f :

1
0,1) = R, f(x) = P je na (0,1) zvezna in neomejena.
Tz —

Trditev 4.0.33 (Izrek o najvedji in najmanjsi vrednosti). Naj bo f : [a,b] —
R zvezna. Potem f na |a,b] doseze svojo natancno spodnjo in zgornjo mejo:

om, 2y € [a,0] 0 flzm) = inf f(z),  flzm)= sup f(z).
z€[a,b] z€[a,b]
Trditev 4.0.34 (Izrek o vmesnih vrednostih). Naj bo f : [a,b] — R zvezna

in naj bosta
m = inf f(x), M = sup f(x).
z€la,b] x€|a,b]
Potem f na [a,b] zavzame vsako vrednost iz intervala [m, M]: za vsak t €
[m, M] obstaja z; € [a,b] s f(x;) =t.

Odvod
Definicija in motivacija
Pri proucevanju funkcij nas zanima, kako se funkcija spreminja: ali njene
vrednosti narasc¢ajo, padajo, in kako hitre so te spremembe. Hitrost sprem-
injanja funkcije f(x) v odvisnosti od spremenljivke = opredelimo s pomocjo
odvoda.

Najbo f: (a,b) = Rin zg € (a,b). Ko se vrednost spremenljivke poveca
iz xg na xg + h, se vrednost funkcije spremeni za

f(zo+h) — f(z0).
Kvocient
f(xo+h) — f(zo)
h

imenujemo diferencialni kvocient. To je smerni koeficient premice skozi tocki

(20, f(w0)) in (o + R, f(z0 + h)).
Definicija 4.0.35. Ce obstaja limita

£ (x0) m f(wo+h) — f(%)j

- ilzl—>0 h

pravimo, da je f odvedljiva v zo, Stevilo f'(x¢) pa je njen odvod.
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Primer 4.0.36. Izracunajmo po definiciji odvod f(z) = 22 + x:

h)? h) — (22
Fla) = tim EFER FEHR Z@HD) o i) — 21,
h—0 h h—0

Primer 4.0.37. Za f(z) = 2% (z > 0) zapiSemo f(x) = *1°8%. Potem po
veriznem pravilu
f'(z) = 2% (logx + 1).

Tangenta

Definicija 4.0.38. Premico skozi (xg, f(z¢)) s smernim koeficientom f’(zq)
imenujemo tangenta na graf funkcije f v tej tocki.

Primer 4.0.39. Za f(z) = 2% in 29 = 1 je f'(1) = 2. Tangenta v tocki
(L)jey=2x—-1)+1=2z—1.

Pravila za odvajanje
« (©'=0, (cf) =cf.
« (f+9)' =1+4
(f9)' =fg+fd.

9

, Ce g # 0.

s (fog)=(fog)9g.

Primer 4.0.40. Odvajajmo f(x) = sin(x?). Notranja funkcija je g(z) = 22,

zunanja h(u) = sin u.
f'(z) = B (g(x))g' (z) = cos(z?) - 2z = 2z cos(z?).
Primer 4.0.41. Naj bo f(x) = % Potem

by 2x(z—1)— (2 +1) a?—-2z-1
fla) = (@ —1)2 T o1
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Tabela odvodov

(") = ra” L, () =e*, (a*) =a"loga,

(logz) =21, (sinz) =cosz, (cosz) =—sinz
1
tanz)’ =
(tan) cos?x’
1
(arcsinz) = ———,
V1—a?
1
(arccos ) = ————,
V1 —a?
1
t f= .
(arctan ) 2

Primer 4.0.42. Izracunajmo

1
@(log(sinm)) = 08T = cota,

kjer je z € (0, 7).

flz+h) - f(z)
h

~ f'(r)  oziroma  f(zx+h) =~ f(x)+ f(z)h

Visji odvodi nekaterih elementarnih funkcij.

o Ceje f(x) = e*, potem za vsak n € N velja
F () = e®.
e Ceje f(z) = 2™ (za celo n > 0), potem za 0 < k < n velja
fB@)y=nn—-1)-(n—k+1)z"",

posebej
F™(z) = nl, FM(z) =0 za m > n.

o Ceje f(z) = sinx, potem

f'(z) = cosx, f"(z) = —sinux, FO(x) = —cosx, W (z) = sinz.
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Lastnosti odvedljivih funkcij.

Izrek. Ce je funkcija f : (a,b) — R odvedljiva v tocki g € (a,b),
potem je f v tocki gy tudi zvezna.

Izrek. Naj bo f : [a,b] — R odvedljiva in naj bo z¢ € (a,b).
Ce je f'(z0) > 0, je f v tocki o narascajoca (lokalno). Ce je
f(xo) <0, je f v tocki zg padajoca (lokalno).

Definicija 4.0.43 (Stacionarna tocka). Ce za odvedljivo funkcijo f : [a, b] —
R velja f'(xg) = 0 za x¢ € (a,b), pravimo, da je g stacionarna tocka funkcije
f. Tangenta na graf v stacionarni tocki je vzporedna abscisni osi.

Definicija 4.0.44 (Lokalni minimum/maksimum, ekstrem). Funkcija f :
[a,b] — R ima v tocki zg € (a,b) lokalni minimum, ¢e obstaja 6 > 0 tako,
da f(zo+h)— f(xo) > 0 za vsak |h| < §. Ima lokalni maksimum, e obstaja
§ > 0 tako, da f(xg+ h) — f(z0) < 0 za vsak |h| < 6. Ce ima f v xo lokalni
minimum ali maksimum, pravimo, da ima v xg lokalni ekstrem.

Izrek 4.0.45 (Fermatov izrek). Ce ima odvedljiva funkcija f : [a,b] — R v
tocki xg € (a,b) lokalni ekstrem, potem je f'(xo) = 0; torej je xo stacionarna
tocka.

Opomba 4.0.46. Obratno ne velja nujno: npr. f(x) = 23+1 ima v 29 = 0
stacionarno tocko, vendar tam ni lokalnega ekstrema.

Izrek 4.0.47 (Rolleov izrek). Naj bo f : [a,b] — R odvedljiva in naj bo
f(a) = f(b). Potem obstaja vsaj ena tocka xo € (a,b), za katero velja

f'(xo) = 0.

Izrek 4.0.48 (Lagrangeov izrek o povprecni vrednosti). Naj bo f : [a,b] —
R odvedljiva. Potem obstaja x¢ € (a,b), da

Fb) = f(a)

b—a

(o) =
Izrek 4.0.49. Naj bo f : [a,b] — R odvedljiva in naj bo f'(x) =0 za vsak

x € [a,b]. Tedaj je f konstantna funkcija.

Izrek 4.0.50. Naj bosta f,g : [a,b] — R odvedljivi in naj bo f'(x) = ¢'(x)
za vse x € [a,b]. Potem obstaja konstanta ¢ € R tako, da f(x) = g(x) + c.
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Izrek 4.0.51 (Kriterij z znakom prvega odvoda). Naj bo f : [a,b] — R
odvedljiva in xo € (a,b) stacionarna tocka. Ce f' v okolici xy (levo-desno)
zamenja predznak, ima f v xg lokalni ekstrem (prehod + — —: maksimum;
— — +: minimum). Ce ima f' v okolici xq, razen v xg, isti predznak, potem
f v xo nima lokalnega ekstrema.

Definicija 4.0.52 (Konveksnost). Funkcija f : [a,b] — R je konveksna na
[a, b], ¢e za vsak [c,d] C [a,b] in vsak x € [c,d] velja

f{d) = f(c)
ﬁ(x—c).

Torej graf f na [c,d] lezi pod tetivo skozi tocki (¢, f(c)) in (d, f(d)).

flz) < fle) +

]
Definicija 4.0.53 (Konkavnost). Funkcija f : [a,b] — R je konkavna na
[a, b], ¢e za vsak [c,d]| C [a,b] in vsak z € [c,d] velja

f(d) = f(e)
?(x—c).

Torej graf f na [c,d] lezi nad tetivo skozi (¢, f(c)) in (d, f(d)).

f(@) = fle) +

Definicija 4.0.54 (Prevoj). Tocka xg je prevoj funkcije f, ¢e se v xg f
spremeni iz konveksne v konkavno ali obratno.

Izrek 4.0.55 (Drugi odvod in oblika grafa). Naj bo f : [a,b] — R dvakrat
odvedljiva.

o Ce f"(z) > 0 za vsak z € (a,b), je f konveksna na [a,b].
o Ce f"(x) <0 za vsak z € (a,b), je f konkavna na [a,b)].

o Ce f"(xg) = 0 in f" pri prehodu skozi xo zamenja predznak, je xq
prevoj.

Izrek 4.0.56 (Drugi odvod v stacionarni tocki). Naj bo f : [a,b] — R
dvakrat odvedljiva in xg € (a,b) stacionarna tocka (f'(xo) =0).

o Ce f"(x9) >0, ima f v xq lokalni minimum.

o Ce f"(x9) <0, ima f v xq lokalni maksimum.

Izrek 4.0.57 (Ekstrem na zaprtem intervalu). Naj bo f : [a,b] — R zvezna.
Potem f na [a,b] doseZe najvecjo in najmangso vrednost. Ce je f odvedljiva,
se lahko motranji ekstremi pojavijo v stacionarnih tockah; ekstrem je lahko

.....
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Primer 4.0.58 (Ekstremi funkcije f(x) = (22 +2+2)(22+2—2)). Zapisimo
g(x) = 2%+, tedaj f(z) = g(x)? — 4.
fl(x) =29(z) ¢'(x) = 2(2* + 2) (2 + 1) = 22(x + 1)(2z + 1).
Stacionarne tocke so
z1 =0, :L‘Qz—%, T3 = —1.

Drugi odvod:
() = 1222 + 122 4 2.

Klasifikacija:
1"(0) = 2 > 0 = lokalni minimum pri z = 0, f”(—%) = —1 < 0 = lokalni maksimum,

f"(=1) =2 > 0 = lokalni minimum pri z = —1.

L’Hospitalovo pravilo
Izrek 4.0.59. Ce lim,_., % vodi v obliko 8 ali 32, potem

lim u(z) = lim u'(x)

T—a U(I) —a ’U/($)

)

ce desna limita obstaja.

Primer 4.0.60. .
sin x . CcosT

lim = lim =1.

z—0 I z—0 1
Primer 4.0.61. | )

lim 287 _ iy 1T g,

r—o00 r—oo ]

Integrali
Nedoloceni integral
Nedolocen integral

Naj bo f : (a,b) — R dana funkcija. Funkcijo F : (a,b) — R, za katero za
vsak x € (a,b) velja
Fl(z) = f(),

imenujemo nedolocen integral (oz. primitivna funkcija) funkcije f in piSemo

F(z) :/f(x) dx.
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Izrek. Ce je F nedolocen integral funkcije f, je tudi F +C nedolocen inte-
gral funkcije f za poljubno konstanto C. Obratno, vsak nedoloc¢en integral
funkcije f je oblike F' 4+ C za neko fiksno primitivno funkcijo F'.

Tabela integralov elementarnih funkcij

Za konstanto C' € R veljajo:

P 1
"y = 1 Zdr =1
/w dx n—|—1+C (n # —1), /xdx oglz| + C,

/exdx:ex—i—(], /a“dx: a +C (a>0,a#1),
loga

/sinavdxz—cosx—kC, /cosa:d:czsinx—kC,
9 1
sec*xdxr = tanx + C, —— dx = arctanx + C,
1+ 22

dx =log(z + V1 +22) 4+ C.

1 1
————dzr = arcsinz + C, /7
/\/1x2 V1+ a?

Pravila za integriranje
Vsa pravila sledijo iz pravil za odvajanje.

e Linearnost:
/(f(:n)—i—g(x)) de = /f(ac) dx—l—/g(x) dz, /kf(x) dx = k/f(x) dx.

« Zamenjava spremenljivke (substitucija). Ce je 2 = x(t) odvedljiva
funkcija in obstaja [ f(x)dz, potem

[ #aydo = [ 1ae) o) dt

o Integracija po delih. Ce obstaja eden izmed integralov [ f(z)g'(x) dx
in [ f'(x)g(x)dz, potem obstaja tudi drugi in

[ f@) @ de+ [ f(@)g(a) do = f(a)g(a) +C.

kar obicajno zapisemo kot

/udv:uv—/vdu.
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Dolocen integral in Riemannove vsote

Naj bo f : [a,b] — R zvezna in (zaradi zveznosti) omejena funkcija. Plos¢ino

med grafom f in osjo x na [a, b] aproksimiramo s plos¢inami pravokotnikov.
Razdelimo [a,b] na delitev a = 9 < 1 < -+ < x, = b in na vsakem

[*k—1, %] izberemo &, € [xg_1,xk]. Riemannova (integralska) vsota je

SUED.E) =3 F(&) (eh — mrr).
k=1

Ce obstaja limita teh vsot, ko gre dolzina najdalj$ega podintervala maxy, (2, —
Zk—1) proti 0, pravimo, da je f Riemannovo integrabilna na |a,b] in defini-
ramo

/bf(x) dr = lim 150 i:f(fk) (.lek _-kal)'
a Y k=1

max(T—Tp_1

(Dodatek) Temeljni izrek integralnega racuna. Ce je f zvezna na
[a,b] in F njena primitivna funkcija, potem

/ab f(z)de = F(b) — F(a).

Izrek 4.0.62. Naj bo f: [a,b] — R zvezna funkcija na intervalu [a,b].
Potem je f na tem intervalu integrabilna.

Opomba 4.0.63. Vsaka zvezna funkcija na zaprtem intervalu je integra-
bilna. Integrabilnih funkcij pa je Se veliko ve¢. Na primer, vsaka odsekoma
zvezna funkcija je integrabilna (funkcija je odsekoma zvezna, ¢e ima kon¢no
ali Stevno neskoncno tock nezveznosti).

Lastnosti dolocenega integrala

1. Integracijsko spremenljivko lahko poljubno oznacimo:
b b
/ flz)de = / (b dt.
a a
2. Ce integralu zamenjamo meji, se spremeni predznak:

/abf(:c)dx = —/baf(a:)dx.
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3. Integral z enakima mejama je enak nic:
a
/ f(z)dx = 0.
a

4. Naj bo f integrabilna na intervalu [a,b] in naj bo A € R konstanta.
Potem je

/ab)\f(x)dx = )\/abf(x)dz:.

5. Naj bosta f in g integrabilni na intervalu [a, b]. Potem je
b b b
[ U@ +g@)de = [ f@yde+ [ g)a.

6. Naj bo a < ¢ < b. Funkcija f je na intervalu [a, b] integrabilna natanko
tedaj, ko je integrabilna na vsakem izmed podintervalov [a, ] in [c, b].
Velja

/abf(x)dx = /:f(x)dx—i-/cbf(x)da:.

7. Ce sta f in g integrabilni in je f(z) < g(x) za vsak = € [a, b], potem je
b b
/ flx)de < / g(z) dzx.

Izrek 4.0.64 (Izrek o povprecni vrednosti). Naj bo m natancna spodnja
meja in M natancna zgornja meja integrabilne funkcije f na intervalu [a,b].
Potem obstaja tako stevilo P, da je m < P < M in

1

P =
b—a

/ab f(z)dz.

Ce je funkcija f tudi zvezna na intervalu [a,b], potem obstaja vsaj ena taka
tocka & € [a,b], da je

1

10 = - [ 1w

Opomba 4.0.65. Naj bo f pozitivnha funkcija. Plos¢ina obmodja pod
grafom funkcije f nad intervalom [a,b] je:

o vecdja od plos¢ine pravokotnika z osnovnico [a, b] in viSino, ki je enaka
minimalni vrednosti funkcije f;
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« manjsa od plos¢ine pravokotnika z osnovnico [a, b] in visino, ki je enaka
maksimalni vrednosti funkcije f.

Torej je plos¢ina obmodcja pod grafom funkcije f nad intervalom [a, b] enaka
ploséini pravokotnika z osnovnico [a,b] in visino, ki je med minimalno in
maksimalno vrednostjo funkcije f.

Izrek 4.0.66. Naj bo funkcija f integrabilna na intervalu [a,b]. Potem je

[ s@ar| < [1r)an

Torej je absolutna vrednost integrala manjsa ali enaka integralu absolutne
vrednosti.

Dokaz. Za vsako integralsko vsoto po trikotniski neenakosti velja

n

> (&R (zk — mp-1)

k=1

< e (e — mr).
k=1

pri ¢emer smo upostevali, da je |rp — zp_1| = =k — Tx—1. V limiti je

leva stran neenakosti enaka

I} f f(x) dm‘, desna stran neenakosti pa je enaka
J21f (@) dx. 0

Zveza med dolocenim in nedolo¢enim integralom

Definicija 4.0.67. Naj bo f: [a,b] — R zvezna in zato integrabilna funkcija.
Potem za vsak = € [a,b] obstaja integral [ f(t)dt, zato lahko definiramo
funkcijo F': [a,b] — R s predpisom

Izrek 4.0.68 (Osnovni izrek analize). Naj bo f: [a,b] — R zvezna funkcija.
Potem je funkcija

Flz) = / £t dt
odvedljiva in velja

) == [ rde = fa).

Opomba 4.0.69. Funkcija F' je zvezna, saj je vsaka odvedljiva funkcija
tudi zvezna.
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= lim /(€)= /().

Izrek 4.0.70 (Newton—Leibnitzeva formula). Naj bo f: [a,b] — R zvezna
funkcija in naj bo G poljuben nedolocen integral funkcije f, torej

Gla) = / F(z) da.
Potem je ,
/a f(z)de = G(b) — G(a).

Opomba 4.0.71. Newton—Leibnitzeva formula pove, kako lahko izracu-
namo doloceni integral ff f(x)dx funkcije f na intervalu [a,b]. Najprej
pois¢emo nedolocen integral G funkcije f in nato izrac¢unamo razliko funkci-
jskih vrednosti G(z)|” = G(b) — G(a).

Tudi v doloceni integral lahko vpeljemo novo spremenljivko.

Izrek 4.0.72 (Substitucija). Naj bo u: [a,b] — R zvezno odvedljiva funkcija,
torej je u' zvezna funkcija, in naj bo f zvezna funkcija na zalogi vrednosti
funkcije u. Potem je

b , B u(b) ) du
/a Flu(@)d (2) de = /u(a) F(u) du.

Prav tako lahko uporabimo pri ra¢unanju dolocenih integralov tudi metodo
per partes.

Izrek 4.0.73 (Rac¢unanje per partes). Ce sta f in g odvedljivi funkciji na
intervalu [a, b], potem velja

b b b
| f@@ e = f@g@|, - [ 1 @9 da.

Posploseni integral

Oglejmo si, kako lahko posplosimo definicijo doloCenega integrala v primeru,
ko je funkcija f neomejena, in v primeru, ko je interval, po katerem integri-
ramo funkcijo f, neomejen.
omejena, obstaja pa integral na vsakem manjSem intervalu in obstaja tudi
limita, potem piSemo

b—e

b
/a f(z)dx = lim f(z)dz.

e—0Jq
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Ce je funkcija f integrabilna na vsakem konénem intervalu in obstaja
tudi limita, ko meje intervala poljubno pove¢amo, potem piSemo

M—o0

/aoof(z)dx: lim /aMf(:c)da:

Uporaba dolocenega integrala

Izra¢un plosc¢ine lika. Najbo f: [a,b] — R pozitivna integrabilna funkcija.
Potem je po definiciji doloc¢enega integrala

/  fa)da

ravno plos¢ina med abscisno osjo in grafom funkcije f na intervalu [a, b].

Ce integrabilna funkcija f: [a,b] — R na intervalu [a, b] ni povsod pozi-
tivna, potem interval [a, b] razdelimo na taki podmnozici, da je na eni podm-
nozici funkcija nenegativna in na drugi negativna. Plosc¢ina med abscisno
osjo in grafom funkcije f je potem vsota integrala funkcije f na prvi podm-
nozici in integrala funkcije f na drugi podmnozici, pomnozenega z —1.

Naj bosta g, f: [a,b] — R integrabilni funkciji in naj bo f(z) > g(z) za
vsak x € [a,b]. Potem je ploS¢ina obmocja med grafoma funkcij f in g na
intervalu [a, b] enaka

[ (@) - ) d

Ce f(z) ni vedja od g(x) za vsak z, potem, podobno kot prej, razdelimo
interval [a,b] na dve podmnozici in na podmnozici, kjer je f(z) < g(z),
integral pomnozimo z —1.

Posledica: [, f(x)dxz = 0 ¢e je f liha funkcijain [* f(z)dz =2 [} f(z),
¢e je f soda.
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Matemati¢no upanje je abstraktna idealizacija povprecja.

Definicija. Matemati¢no upanje ali pricakovana vrednost sluc¢ajne spre-
menljivke X, ki ga oznac¢imo z p ali F(X), je definirano s predpisom

E(X) =) i f(x:),
i=1

kjer x1, ..., z, oznacujejo mozne vrednosti slucajne spremenljivke X, f(z;) =
P(X = x;) pa pripadajoce verjetnosti.

Primer. Pri metu kovanca dobimo 2 evra, ¢e pade zgornja stran ko-
vanca, ¢e pa pade spodnja stran kovanca, dva evra placamo (tj. izgubimo
2 evra). Verjetnost, da pade zgornja stran kovanca, je 0,49, verjetnost, da
pade spodnja stran kovanca, pa 0,51.

Koliksna je pricakovana izguba, ¢e smo vrgli kovanec 100-krat?

Resitev. Naj bo X slucajna spremenljivka, ki predstavlja dobicek pri
enem metu (v evrih). Potem velja
2, z verjetnostjo 0,49,
X =
2, =z verjetnostjo 0,51.
Zato je matemati¢no upanje pri enem metu
E(X) =2-049+ (-2)-0,51 = 0,98 —-1,02 = —0,04.

Pricakovan dobicek pri enem metu je torej —0,04 evra, kar pomeni pricako-
vano izgubo 0,04 evra.
Naj bo zdaj S1p0 = X1+ X2+ - -+ X100 vsota dobickov pri 100 neodvisnih
metih. Potem
100
E(Si00) = »_ E(Xg) =100 E(X) =100 - (—0,04) = —4.
k=1

53
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Pricakovana izguba pri 100 metih je torej

Definicija. Varianca slucajne spremenljivke X, ki jo ozna¢imo z o2 ali
V(X) ali Var(X), je definirana s predpisom

n

V(X)=E(X —w)?) = (zi — w)? flx),

=1

kjer je p = E(X) matemati¢no upanje slu¢ajne spremenljivke X.
Standardni odklon (standardna deviacija) slucajne spremenljivke X je

o =Vo?=,/V(X).

Velja tudi uporabna formula
2
V(X) = B(X?) - (E(X))".

Primer. Izracunajmo varianco slucajne spremenljivke X iz prejsnjega
primera.

Resitev. 1z prejsnjega primera vemo, da
P(X =2)=0,49, P(X =-2) =0,51,
in da je
E(X) = -0,04.

Najprej izra¢unamo
E(X?)=22.049+ (-2)?-0,561 =4-0,49+4-0,51 = 4- (0,49 + 0,51) = 4.
Zato je varianca

V(X)=E(X?) — (B(X))*=4—(-0,04)*> =4 —0,0016 = 3,9984.

Standardni odklon je
o=4/V(X) =~ +/3,9984 ~ 1,9996 ~ 2.

Opomba. Slucajni spremenljivki imata lahko enako matemati¢no up-
anje in razlicno varianco. To pomeni, da imata lahko enako povprecno
vrednost, vendar se ena okoli te vrednosti bolj »razprsi« kot druga.
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Trditev. Za diskretno slucajno spremenljivko X z gostoto verjetnosti f
in za funkcijo h velja

n

E(h(X)) =Y ha:) f(z),

=1

kjer z1,...,x, oznacujejo vrednosti slucajne spremenljivke X.

Definicija. Sluc¢ajno spremenljivko, ki je enaka Stevilu uspesnih Bernoul-
lijevih poskusov, imenujemo binomska slucajna spremenljivka.

Ce je X binomska slu¢ajna spremenljivka s parametroma n in p, potem
je njena gostota verjetnosti

f) = P(X =) = @px(l —p)"E, w=01.m

Trditev. Ce je X binomska slu¢ajna spremenljivka s parametroma n in
p, potem
n=E(X) = np,

varianca pa je

V(X) =np(1-p).

Definicija. Slucajno spremenljivko, ki je enaka Stevilu Bernoullijevih
poskusov do prvega uspesnega poskusa, imenujemo geometrijska slucajna
spremenljivka.

Gostota verjetnosti geometrijske slucajne spremenljivke X s parametrom
pje

flz)=P(X =2)=(1—-p)* 1p, x=1,2,...

Trditev. Ce je X geometrijska slu¢ajna spremenljivka s parametrom p,

potem je

1
p=FEX)= -,
(X) ’
varianca pa je
l—p
V(X)= .
(X) pE

Definicija. Naj bo poskus sestavljen iz Bernoullijevih poskusov, ki so
med seboj neodvisni, v vsakem poskusu sta le dva mozna izida (»uspeh« ali
»neuspeh«), verjetnost uspeha v vsakem poskusu pa je enaka p.

Slucajno spremenljivko, ki je enaka stevilu Bernoullijevih poskusov do
r-tega uspesnega poskusa, imenujemo negativna binomska slucajna spre-
menljivka.
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Gostota verjetnosti negativne binomske slucajne spremenljivke X je
x—1 T—r_ T
fle)=P(X =2)= (1—=p)*"p", x=rr+1,r+2,...

Trditev. Ce je X negativna binomska slu¢ajna spremenljivka s parametroma,
r in p, potem je

varianca pa je

Primer. Elektronska tehtnica na avtomatski polnilni liniji ustavi proizvod-
njo, ¢e so tri embalaze napolnjene manj od zahtevane vrednosti. Verjetnost,
da je polnjenje prelahko, je p = 0,001. Vsa polnjenja so neodvisna.

1. Koliks$na je verjetnost, da se proizvodnja ustavi po 3, po 100, po 1000,
po 3000 napolnjenih embalazah?

2. Koliko embalaz je v povprecju napolnjenih, preden se proizvodnja us-
tavi?

Resitev.

Naj bo X slucajna spremenljivka, ki oznacuje stevilo vseh napolnjenih
embalaZ do ustavitve proizvodnje (vkljuéno s tisto embalazo, ki povzroci
ustavitev).

Ustavitev se zgodi, ko se pojavi tretja prelahko napolnjena embalaza.
Vsaka embalaza je neodvisen Bernoullijev poskus z verjetnostjo »uspeha«
(prelahkega polnjenja) p = 0,001.

Zato je X negativna binomska slucajna spremenljivka s parametroma

r =3, p = 0,001.

Velja torej

r—1 T—r, T r—1 r—

1. Za posamezne vrednosti dobimo:

2
P(X =3) = <2> (1-p)*=1-1-p=p>=(0,001)3=1077.
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P(X =100) = (929> (1—p)”p’.

P(X =1000) = (929> (1—p)%7p3.

2999
P(X = 3000) = < 0 )(1 — p)297p3,

To so vse zelo majhne verjetnosti; najvecja verjetnost bo v okolici
matematicnega upanja F(X) (glej tocko 2.

2. Iz trditve za negativno binomsko porazdelitev sledi

r 3
5 = 0.001 3000.

BE(X) =

V povprecju bo torej napolnjenih

3000 embalaz

preden se proizvodnja ustavi.

Definicija. Naj bo v kon¢ni mnozici z N elementi K »slabih« elemen-
tov. Iz mnozice naklju¢no brez vracanja izberemo n elementov. Slucajno
spremenljivko, ki je enaka stevilu slabih elementov v vzorcu, imenujemo
hipergeometrijska slucajna spremenljivka.

Gostota verjetnosti hipergeometrijske slucajne spremenljivke X je

K\ (N-K
GG
N 9
()
pri ¢emer so vrednosti x omejene tudi z 0 <z < Kin0<n—x<N-K
(tj. « ne more biti veéje od K in ne manjse od n — (N — K)).

z=0,1,...,n,

. K
Ce oznacimo p = N (delez slabih elementov v populaciji), potem velja:

Trditev. Za hipergeometrijsko slucajno spremenljivko X velja

N —n
N-—-1"

E(X)=mnp,  V(X)=np(l-p)
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Naj bo X binomska slucajna spremenljivka za n Bernoullijevih poskusov
z verjetnostjo p. Oznacimo

E(X)=np=A\.

Potem je

PIX =] = (Z);om ) = (Z) (%)‘”(1 - %)H

Za n — oo, p — 0 tako, da np = X\ ostane konstanten, dobimo Poissonovo
porazdelitev.

Poissonov proces. Na danem intervalu se naklju¢no pojavljajo stevila.
V povpreéju se jih pojavi A. Denimo, da lahko interval razdelimo na podin-
tervale, tako da velja:

e verjetnost, da se na podintervalu pojavi ve¢ kot eno Stevilo, je zane-
marljiva (priblizno 0);

e verjetnost, da se na podintervalu pojavi stevilo, je enaka za vse pod-
intervale in sorazmerna z dolzino podintervala;

e Ce se Stevilo pojavi na nekem podintervalu, je to neodvisno od doga-
janja na ostalih podintervalih.

Definicija. Slucajna spremenljivka X, ki je enaka Stevilu pojavljenih
»dogodkov« na intervalu pri Poissonovem procesu, se imenuje Poissonova
slucajna spremenljivka s parametrom A > 0.

Definicija. Gostota verjetnosti (porazdelitvena funkcija mase) Pois-
sonove slucajne spremenljivke X je

-\
f@)=P(X=2)= <2 a—012,....

x!

E(X)=2A  V(X)=A\

Primer. Pri proizvodnji opti¢nega diska se na 1 cm? v povpreéju pojavi
0,1 delec necistoce. Proizvajamo disk s povr§ino 100 cm?.

1. Koliksna je verjetnost, da se na disku pojavi 12 delcev necistoce?

2. Optic¢ni disk zavrzemo, ¢e ima vec kot 3 delce necistoce. Koliksna je
verjetnost, da izdelani disk zavrzemo?
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Resitev.

Naj bo X sluc¢ajna spremenljivka, ki predstavlja stevilo delcev necistoce
na enem disku.

Povprecno stevilo delcev na celotnem disku je

A=0,1-100 = 10.

Zato modeliramo X kot Poissonovo slucajno spremenljivko s parametrom

A =10: 0
~107 (%
PX=u)="——, 2=012...
X

1. Verjetnost, da se na disku pojavi natanko 12 delcev necistoce, je

67101012

P(X =12) = —

To je lahko tudi numeri¢no priblizamo (po zelji), a v zapiskih obi¢ajno
pustimo v tej obliki.

2. Disk zavrzemo, ¢e ima ve¢ kot 3 delce, torej za dogodek {X > 3}.
Zato

3
P(disk zavrzemo) = P(X >3)=1-P(X <3)=1-> P(X =k).

k=0
Ker je X ~ Poisson(10), dobimo

3 _—101nk 2 3

e 10 _10 100 10

P(XS?’):,;) ¢ (1+10+?+?)’
zato ) ,
10 10

P(disk zavrzemo) = 1 — 6_10(1 +10+ 0 + ?)

To je iskana verjetnost. Ce zelimo, jo lahko Se numeri¢no ocenimo,
vendar je v teoreti¢nih zapiskih tak zapis povsem zadovoljiv.

Zvezna slucajna spremenljivka.
Primeri:

e temperatura spojine ob koncu kemicne reakcije;

e dolzina sestavnega dela;
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e napetost v napeljavi;
e potreben cas, da se izvede poskus.

Definicija. Zaloga vrednosti zvezne sluc¢ajne spremenljivke X je enaka
mnozici realnih Stevil R. Gostota verjetnosti (verjetnostna funkcija) f zvezne
slucajne spremenljivke X je funkcija, za katero velja:

o f(x) >0zavsex €R;

o za vsak interval [a, b] velja
b
Pla< X <b)= / f(z)dz.

a
Opomba. Za zvezno slu¢ajno spremenljivko velja
P(X=a)=0

za vsak a € R.
Opomba. Za poljubni realni stevili 1 < xo velja

P(:Ul§X§$2):P($1<X§ZL‘2):P(1‘1SX<Q?2)ZP(1’1<X<ZE2),

ker je verjetnost posamezne tocke enaka 0.
Definicija. Kumulativna ali porazdelitvena funkcija F zvezne slucajne
spremenljivke X je funkcija

Trditev. Ce je X zvezna slucajna spremenljivka z gostoto verjetnosti
f, potem je

za vse tiste x, kjer je f zvezna.
Definicija. Matemati¢no upanje (pric¢akovana vrednost) zvezne slu¢ajne
spremenljivke X je definirano s predpisom
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Definicija. Varianca sluc¢ajne spremenljivke X je definirana s predpisom

V) = B(X =) = [ (o= () do.

—00

Standardni odklon (standardna deviacija) slucajne spremenljivke X je

o =Vo? =,/V(X).

Trditev. Za zvezno slucajno spremenljivko X z gostoto verjetnosti f in
za funkcijo h velja

5.1 Primeri zveznih slucajnih spremenljivk

Enakomerna porazdelitev

Definicija 5.1.1. Zvezna slucajna spremenljivka X je enakomerno porazdel-
jena na intervalu [a, b], kar oznacimo z

X ~U(a,b),
¢e ima gostoto verjetnosti
1
, a<z<b,
fx(x)y=<{b—a
0, sicer.
Trditev 5.1.2. Naj bo X ~U(a,b). Tedaj velja
a+b
p=EX)=—
m ( )
b—a)
Var(X) = .
ar(X) 5

Dokaz. Ker je X zvezna slucajna spremenljivka z gostoto fx(z) = ﬁ na
[a, b], dobimo za pri¢akovano vrednost

E(X):/OO ﬂ:fx(x)d:c:/bx-biadm:bia/abxdx.

—00 a
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Izra¢unamo integral:

b
/bxdx— [12] _ b? — a? _ (b—a)(b—i—a).

Zato ) b b
E(X) (b—a)( +a):a—|—b‘
b—a 2 2

Za, varianco uporabimo definicijo

Var(X) = E(X?) - E(X)%

Najprej izra¢unamo E(X?):

E(X2):/Oox2fx(x)dx:/b:c2 ! dzx = ! /abedx.

o a "b—a b—a

Integral je

Torej

b—a 3  3(b—a)
Uporabimo razcep b* — a® = (b — a)(b? + ab + a?):
b—a)(b®+ab+a®)  a®+ab+b?
3(b—a) B 3 '

Ker je E(X) = “TH’, dobimo

2 2 2
Var(X) = B(X?) - B(X)? = 2 “;Hb - (a;b) .

Sedaj

<a+b>2 B a® + 2ab + b?
2 - 4 '
zato

a’+ab+b*  a® +2ab+ b’
3 4 '
Zapisimo z enakim imenovalcem 12:
4(a® + ab+ b*) — 3(a® + 2ab+ b*) _ 4a® + 4ab+ 4b* — 3a* — 6ab — 3b?
12 B 12
a? —2ab+b*  (b—a)?
12 12
S tem je trditev dokazana. O

Var(X) =

Var(X) =
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Enakomerna porazdelitev — primer

Primer 5.1.3. Slucajna spremenljivka X je enaka toku (v mA), ki ga izme-
rimo v tanki bakreni zici. Privzamemo, da je X enakomerno porazdeljena z
vrednostmi od 0 do 10 mA, torej

X ~U(0,10).
1. Koliksna je verjetnost, da je izmerjeni tok manjsi od 2 mA?

Ker je gostota

1 1
—— 0<z<10
fX(q:):{lo—O 0 S =T=

0, sicer,

dobimo

P(X < 2) /21d L 902
= — ar = — - = .
o 10 10 ’

2. Koliko je matemati¢no upanje in koliko standardna deviacija?

Za enakomerno porazdelitev U(a, b) veljata

_a+b _ (b—a)?
E(X) =5~  Var(X)= ">
Tukaj je a = 0, b = 10, zato
1
E(X)ZOEO:E)mA,
(10—-0)2 100 25
Xziziz—
Var(X) 12 12 3

standardna deviacija pa je

2
ox =/ Var(X) = \135 = 53 ~ 2,89 mA.

Normalna porazdelitev

Definicija 5.1.4. Zvezna slucajna spremenljivka X je normalno porazdel-
jena s parametroma p € R in ¢ > 0, kar oznac¢imo z

X ~ N, 0?),

¢e je njena gostota verjetnosti
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Trditev 5.1.5. Naj bo X ~ N (u,0?). Tedaj velja
E(X) =p, Var(X) = o2

Dokaz. Dokazimo le pricakovano vrednost pricakovano vrednost:

oo 00 T — )2
E(X):[w$fx(x)d$:[mm \/%Uexp(—(&ﬂu)> dx.

Uvedemo novo spremenljivko

y=x—pu =— x=y+u, dr=dy.
Dobimo
B = [ vo)
= ——exp| — = .
7ooy K 27raep 952 Yy

Razcepimo integral na dva dela:

o0

o0 1 2 /(262 1
200 = [ v e e

11 I2

V22 gy

o Integral I; je 0, ker je funkcija y +— ye_yQ/(Qaz) liha, integriramo pa
po simetriénem intervalu (—oo, 00):

I =0.

o Integral I, je enak 1, saj gre za celoten integral gostote normalne
porazdelitve s parametroma (0, 0):

I, =1.

Tako dobimo
EX)=04+p-1=p.

Standardizirana normalna spremenljivka

Definicija 5.1.6. Zvezna slucajna spremenljivka X je standardizirana nor-
malna spremenljivka, ¢e je X ~ N (0, 1), torej ima g = 0 in ¢ = 1. Oznacimo
jo z Z in njena gostota je
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Trditev 5.1.7. Naj bo X slucajna spremenljivka s koncno varianco Var(X)
mn
Y =a+ 00X,
kjer sta a,b € R. Potem velja
Var(Y) = b* Var(X).

Dokaz. Po definiciji variance imamo

Var(Y) = E[(Y — E(Y))?].

Ker je
E(Y)=E(a+bX)=a+0bE(X),
sledi
Y—-E(Y)=a+bX — (a+bE(X)) =b(X — E(X)).
Zato

Var(Y) = E[(Y-E(Y))?] = E[p*(X-E(X))?] = ®* E[(X—~E(X))?] = b* Var(X).
O

Trditev 5.1.8. Naj bo X normalna slucajna spremenljivka s parametroma
pin o >0, torej X ~ N (u,0?). Potem je

_X-p
B (o

Z

standardizirana normalna spremenljivka, tj. Z ~ N(0,1).

Dokaz. E(Z) = 0, izracun za varianco pa sledi iz prejsnje trditve. ]

Primer — teza prvosolcev

Statisti¢ni podatki so pokazali, da 15% slovenskih prvosolcev tehta manj kot
25 kg, 10% pa ve¢ kot 33 kg. Predpostavimo, da je teza prvosolcev zvezna
in (priblizno) normalno porazdeljena:

X ~ N(p,0?).



66

CHAPTER 5.

1. Ocenite, koliko v povprecju tehta slovenski prvosolec.

Iz podatkov:
P(X < 25) =0,15, P(X > 33) = 0,10.

Druga enakost pomeni P(X < 33) = 0,90.

Standardiziramo:
_X-up

o

VA

~ N(0,1).

Potem
25—p

P(X<25):P<Z< ):0,15,

33 —u
o

P(X <33)=P (Z < ) = 0,90.

Oznac¢imo kvantile standardne normalne porazdelitve z z,, tako da
P(Z < z,) = p. Iz tabel normalne porazdelitve (ali rac¢unalnisko)
dobimo priblizne vrednosti

20,15 ~ —1,04, 20,90 ~ 1,28.

Tako dobimo sistem

25 — 33 —
DT H 04, K
g g

Od tod:
2% —p~—10d0 = p~25+1,040,

33—pu~1280 = pu~33-—1280.

Izenac¢imo desni strani:
254+1,040 =33-1,280 — (1,04+1,28)0 =8 — 2,320 ~38&.

Tako
8

2,32
Vstavimo nazaj v pu ~ 25+ 1,04 0:

o=

~ 3,45 ~ 3,5 kg.

w25+ 1,04-3,45 ~ 25 + 3,59 =~ 28,6 kg.

Torej je

n~286ks, o~35ke




5.1. PRIMERI ZVEZNIH SLUCAJNIH SPREMENLJIVK 67

2. Ali je Tina, ki tehta 22 kg, med 5% najlazjih osnovnosolcev?

Tino modeliramo kot realizacijo X. Standardiziramo njeno tezo:

224 22-986 —66
ina = ~ = ~ —1,89.
“Tina o 35 35

Pois¢emo P(X < 22) = P(Z < 2z7ipa):
P(Z < —1,89) ~ 0,03.

(iz tabele standardne normale, z ~ —1,89 da priblizno 3%).

Torej priblizno 3% prvosolcev tehta manj kot Tina. To pomeni, da
Tina je med 5% najlazjih osnovnoSolcev.

]P(X <22 kg) ~ 3% < 5%, torej je Tina med 5% najlazjih.

Centralni limitni izrek

Izrek 5.1.9 (Centralni limitni izrek). Naj bodo X1, Xo,..., X, enako po-
razdeljene, neodvisne slucajne spremenljivke z matematicnim upanjem p in
varianco o®. Oznacimo

Potem ima v limiti, ko n — oo, slucajna spremenljivka

_Xn—p
NG

standardizirano normalno porazdelitev.

VA

Primer:
Naj bodo X1, X, ..., X, neodvisne Bernoullijeve slu¢ajne spremenljivke:

1, cCe je uspeh
x, = 4 1» ¢ejeuspeh,
0, sicer,

pri Cemer je
P(Xi=1)=p, IP(XZ:()):l—p
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Takrat je
Sp=X1+ -+ X, ~ Bin(n, p),

torej stevilo uspehov v n poskusih.
Za Bernoullijevo spremenljivko velja

E[X;] = u = p, Var(X;) = o = p(1 — p).
Centralni limitni izrek pravi, da za velike n velja priblizek

Sn_np

wd—p) MO,

kjer je N(0,1) standardna normalna porazdelitev.
Konkretni Primer
Naj bo n =100 in p = 0,3. Potem

E[S100] = 100 - 0,3 = 30,

Var(S100) = 100-0,3-0,7 =21,  /Var(Si0) = V21 ~ 4,583,

Zelimo priblizno izrac¢unati verjetnost
]P(25 < Si00 < 35).

Standardiziramo:

25-30 _ Si00—30 _ 35—30
P(25 < Sigo < 35) = IP’( 100 )

V2l Toov21 T V2l

Dobimo priblizno
P(—1,09 < Z < 1,09),

kjer je Z ~ N(0,1).
Iz tabel standardne normalne porazdelitve dobimo priblizje vrednosti

P(Z < 1,09) ~ 0,862, P(Z < —1,09)~ 0,138,

zato
IP’(25 < Sipo < 35) ~ 0,862 — 0,138 = 0,724.

Tako binomsko porazdelitev Bin(100,0,3) priblizamo z normalno po-
razdelitvijo s parametri

N (30, 21) oziroma standardizirano z N (0, 1).
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Eksponentna porazdelitev

Za eksponentno porazdelitev s parametrom A > 0 velja
fx(@)=Xxe™, x>0,
in fx(x) =0zaz <0.

Trditev 5.1.10. Ce je X eksponentna slucajna spremenljivka s parametrom

A, potem je
1 1
MZE(X)ZX’ Var(X):F.
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Chapter 6

Funkcije dveh spremenljivk

Funkcije dveh spremenljivk

Ko opazujemo nek pojav, je ta sicer lahko odvisen od ene koli¢ine, bolj
obicajno pa je, da je rezultat odvisen od ve¢ koli¢in. Na primer:

o kemijska reakcija je odvisna od temperature in tlaka,

e temperatura v prostoru je odvisna od treh koordinat in casa.

Definicija
Realna funkcija f dveh spremenljivk je preslikava, ki slika iz obmocja D C
R? v R, torej

f+D—=R, (z,9) = f(z,y)

Graf funkcije f dveh spremenljivk, definirane na obmodju D C R? v
tridimenzionalnem koordinatnem sistemu, je mnozica

L(f) = {(z,y, f(z,y)) : (x,9) € D} C R,

ki predstavlja ploskev v prostoru.

Pri geometrijski predstavi funkcije f dveh spremenljivk, definirane na
obmoéju D C R? si lahko pomagamo tudi z izoértami (contour lines).
Izocrte funkcije f: D — R so krivulje v D, ki povezujejo tiste tocke v D,
pri katerih ima funkcija f isto vrednost.

71
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Primer

Naj bo
fla,y) =2+ 47

Izocrte so koncentriéne kroznice.

Zveznost funkcije dveh spremenljivk

Definicija. Funkcija f: D — R, D C R?, je zvezna v tocki (z9,y0) € D, ¢e
za vsak € > 0 obstaja tak § > 0, da je

|f(z,y) — f(wo,m0)| < ¢

za vsako tocko (z,y) € D, za katero velja

[(%,y) — (w0, y0)| <6,

to je

\/(90 —20)% + (y —yo)? < 0.

Parcialni odvodi

Naj bo f: D — R, D C R2, funkcija dveh spremenljivk. Ce je vrednost
spremenljivke y fiksna, na primer y = yp, vrednost spremenljivke x pa se
spreminja, postane funkcija f funkcija ene spremenljivke x.

Funkcijo ene spremenljivke pa znamo odvajati. Definirajmo odvod funkcije
dveh spremenljivk po eni izmed spremenljivk, pri ¢emer je druga izmed spre-
menljivk fiksna.

Definicija. Naj bo f: D — R, D C R?, funkcija dveh spremenljivk. Ce

obstaja limita diferen¢nega kvocienta

f(:c+h,y)—f(:1:,y)

i) h ’
potem pravimo, da je
of o flathy) - f(z,y)

parcialni odvod funkcije f po spremenljivki z v tocki (z,y). Parcialni odvod
krajse zapisemo tudi kot

of

%($7y) = fw(xay)



73

Podobno definiramo parcialni odvod funkcije f po spremenljivki y s pred-
pisom
f,y+h)— flz,y)

(l"y) = }ILIE{%] h °

of
oy

Primer. Izracunajmo parcialni odvod funkcije

fz,y) =log(z + zy + y°).

Diferencial funkcije dveh spremenljivk

Ce je f funkcija ene spremenljivke, potem je njen diferencial definiran kot
df = f'(z) da.

Geometrijska interpretacija diferenciala je, da graf funkcije aproksimiramo
s premico, torej funkcijo aproksimiramo z linearno preslikavo.

Na podoben nacin definiramo tudi diferencial funkcije dveh spremenljivk.
Ce je funkcija f diferenciabilna v tocki (a, b), potem je

fla+h,b+ k)= f(a,b) + fz(a,b) h+ fy(a,b) k.

S pomocjo diferenciala lahko graf funkcije dveh spremenljivk aproksimiramo
z grafom linearne funkcije, to je ravnino.

Verizna pravila (posredne funkcije)

Oglejmo si pravilo za odvajanje posrednih funkcij, to je verizno pravilo. Naj
bo

z = z(u,v), u=u(z,y), v=uv(x,y).

Potem velja

Zp = Zy Ug + 2y Vg, Zy = Zy Uy + 2y Vy.

Primer. Naj bo

z=u’logv, u =
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Visji odvodi
Ce parcialno odvedljivo funkcijo f: D — R, D C R?, parcialno odvajamo,
sta funkciji fz, fy: R? — R zopet funkciji dveh spremenljivk.

Ce sta parcialno odvedljivi, ju lahko ponovno parcialno odvajamo in
dobimo parcialne odvode drugega reda:

Ofs 0’
. aij;(xay) = fxw(x7y) = 8735];(1.7?4)’
Ofs °f

0
8y (:an) = fxy($ay) = 8:1/83} (l'ay)a

P o
e Do) = fonlon) = k)

0 02
8fyy(w7y) = fyy(3773/) - @;(ajay)

Izrek. Naj bo f: D — R, D C R?, dvakrat parcialno odvedljiva
funkcija. Ce sta funkciji fzy in fy, zvezni, potem velja

fa:y = fyac~

Opomba. V splosnem mesana odvoda funkcije nista enaka.

Hessejeva matrika

Definicija. Matrika drugih parcialnih odvodov funkcije f: D — R, D C

R?, je
_ | fe(2y) fay(2,y)
Hiz.y) = <fyx<x,y> fyy<x,y>> ’

in se imenuje Hessejeva matrika.

Opomba. Elementi Hessejeve matrike so funkcije.

Opomba. Ce sta druga parcialna odvoda funkcije f: D — R, D C R?,
zvezna, potem je Hessejeva matrika funkcije f simetri¢na.

Ekstrem funkcije dveh spremenljivk

Definicija. Funkcija f: D — R, D C R?, ima v tocki (a,b) ekstrem, ¢e
obstaja tako stevilo 6 > 0, da ima izraz

fla+h,b+k)— f(a,b) (6.1)



75

isti predznak za vsak h,k, za katera velja h? + k% < 62, Ce je izraz (6.1)
pozitiven, je v tocki (a,b) minimum, ¢e je izraz (6.1) negativen, je v tocki
(a,b) maksimum.

Kaksnemu pogoju mora zadoscati funkcija, da bo v tocki (a, b) ekstrem?

Ce fiksiramo eno izmed neodvisnih spremenljivk, na primer y = b, potem
je funkcija g(z) = f(x,b) funkcija ene spremenljivke; potreben pogoj za
nastop ekstrema funkcije g pa je

g’(a) = faz(a7 b) =0.

Podobno razmislimo, da mora biti tudi fy(a,b) = 0.
Torej je potreben pogoj za nastop ekstrema funkcije dveh spremenljivk
v tocki (a,b) pogoj

fz(a,b) =0, fy(a,b) =0.

Omenjeni pogoj pa ni tudi zadosten pogoj za nastop ekstrema. Lahko
sta oba parcialna odvoda v neki tocki enaka ni¢, pa v tej tocki ni ekstrema
(sedlo).

Tocke (z,y), za katere velja

fx(z,y):(), fy($ay) :Oa

imenujemo stacionarne tocke funkcije f.

Izrek. Funkcija f: D — R, D C R? ima v stacionarni tocki (a,b)
ekstrem, ce velja

det H(a,8) = (Fanfyy — Foyfye) (@.5) > 0.

V tem primeru je za fzz(a,b) > 0 v tocki (a,b) minimum, za f;,(a,b) <0
pa maksimum.
Ce je
det H(CL, b) - (fxxfyy - f:cyfyx) (a7 b) <0,
v tocki (a,b) ni ekstrema (sedlo).
Ce je
det H(CL, b) = (fxzfyy - fa:yfyx) (a7 b) =0,
s pomocjo drugih parcialnih odvodov ne moremo ugotoviti, ali je v tocki
(a,b) ekstrem ali ne.
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Definicija. Matrika drugih parcialnih odvodov funkcije f: D — R,

D C R?, je
_ foae(2,9) f:ry($>y)
Hz,y) = <fyfc($,?/) fyy($a9)> 7

in se imenuje Hessejeva matrika.

Opomba. Elementi Hessejeve matrike so funkcije.

Opomba. Ce sta druga parcialna odvoda funkcije f: D — R, D C R?,
zvezna, potem je Hessejeva matrika funkcije f simetri¢na.

Primer: ekstrem funkcije brez pogojev
Doloc¢imo ekstreme funkcije
f(z,y) =222 +y — 2zy — 3z — 3.

Najprej poisc¢emo stacionarne tocke. Izrac¢unamo parcialne odvode:

fo(z,y) = 4o — 2y — 3, fy(z,y) =1—2x.

Stacionarne tocke dobimo iz sistema

f$($,y) =0, fy(x,y) =0:
dr — 2y — 3 =0, 1-2z=0.

Iz druge enacbe dobimo z = % Vstavimo v prvo:

1 1
45-2%-3=0=2-2-3=0= -1-2y=0 = y=—g.

Stacionarna tocka je torej (a,b) = (%, —%)

Za klasifikacijo izracunamo Hessejevo matriko:
Jez =4 [y =0, fay = fye =2
Determinanta Hessejeve matrike v stacionarni tocki je
det H(a,b) = frz(a,b) fyy(a,b) — fuy(a,b)> =4-0— (=2)% = -4 < 0.

Ker je det H(a,b) < 0, v tocki (%, —%) ni ekstrema, temve¢ ima funkcija f

tam sedlo.
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Vezani ekstrem
Is¢emo ekstrem funkcije f: D — R, D C R?, pri pogoju, da velja
g9(z,y) = 0.

Torej iS¢emo ekstrem funkcije na neki podmnozici definicijskega obmocja;
ta podmnozica je dolocena z zvezo g(z,y) = 0 med spremenljivkama z in y.
Z enacbo g(z,y) = 0 je implicitno doloc¢ena krivulja v R2.

Oglejmo si Lagrangevo metodo za doloc¢anje vezanega ekstrema funkcije

f pri pogoju g(z,y) = 0.
Definiramo novo funkcijo F' treh spremenljivk x,y in A s predpisom

F(.T,y7A) - f($,y) + Ag(xay)

Funkcijo F' imenujemo Lagrangeva funkcija, parameter A pa Lagrangev mul-
tiplikator.

Tocke, ki so kandidati za vezani ekstrem, poiscemo tako, da pois¢emo
stacionarne tocke funkcije F', torej

Fx(q:ay))‘)zoa Fy(ﬂl‘,y,A):O, F)\(l"y’)‘)zo
Dobimo tri enacbe za tri neznanke, pri ¢emer je zadnja enacba enaka pogoju

g(x,y) = 0.

Primer: ekstrem funkcije pri kroznici

Doloc¢imo ekstrem funkcije
fley)=z+2y

pri pogoju
22+ y? =5

Definiramo Lagrangevo funkcijo
Fz,y,A) = 2+ 2y + A(z” +y° = 5).
Izracunamo parcialne odvode:

F,=1+2\z, F,=2+4+2\wy, F\=2>+y>-5.
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Stacionarne tocke dobimo iz sistema

142Xz =0,
242 \y =0,
2 +y?—-5=0.

Iz prvih dveh enach izrazimo A:

1
A=——, A=-—

1 1
Sledi —— = ——, torej
2z Y
y = 2x.
Vstavimo v pogoj:

21 = g =+1.

P4+ (20) =5 = 2*+42’ =5 = 51’ =5 — 1
Ker je y = 2z, dobimo tocki
(1,2) in (=1,-2).
Vrednosti funkcije f:
F(1,2)=142-2=5,  f(-1,-2)=—-1+2-(-2) = —5.

Ker je mnozica {(x,y): 22 + y?> = 5} kompaktna in je f zvezna, sta to
globalna ekstrema:

max f =5 v tocki (1,2), min f = —5 v tocki (-1, —2).

Resitev.
Naj bo
flx,y) = 22 4 2z + 2.

(a) Stacionarne tocke in njihova klasifikacija.

Stacionarne tocke dobimo iz pogoja

Vf(z,y)=D0.

Izracunamo parcialne odvode:

fo(z,y) =22+ 2, fy(z,y) =2y.
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Stacionarne tocke dobimo iz sistema
2z +2 =0, 2y =0,

torej

Edina stacionarna tocka je (—1,0).

Za klasifikacijo uporabimo Hessejevo matriko:

He(x,y) = v = )

£z, y) <fyx e 0 9

Ker je determinanta pozitivna in f;, > 0 ima f v stacionarni tocki
(—1,0) lokalni minimum.

Globalni ekstremi na krogu z% + y* < 4.

Funkcija f je polinom, torej zvezna na R?. Mnozica {(z,y) | 2%+ <
4} je kompaktna (zaprta in omejena), zato f na tem krogu doseze
globalni minimum in globalni maksimum.

Najprej opazimo, da lahko funkcijo zapisemo v obliki
fla,y) =2+ 20 +y = (e +1)* + 9 - 1.

Iz tega je razvidno, da je globalni minimum v celotni ravnini dosezen
v tocki (—1,0), kjer je

f(=1,0) = (-1+1)*+0°—1=—1.

Ker ta tocka lezi v notranjosti kroga x2 + 32 < 4 (saj (—1)2 + 0% =
1 < 4), je (—1,0) tudi globalni minimum na krogu.

Za maksimum preverimo rob kroga, to je kroznica
2 4y? =4
Na robu velja
flz,y) =2?+2x +y> = (22 + %) + 220 = 4 + 2.
Na kroznici je torej vrednost funkcije odvisna le od z, in sicer

f(z,y) =4+ 2z, kjer —2 <z <2.
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e Najmanjsa mozna vrednost na robu je pri x = —2:
f(=2,0)=4+2-(-2)=0.
e NajveCja mozna vrednost na robu je pri x = 2:
f(2,0)=4+2-2=28.

Ker je najmanjsa vrednost na robu 0, v notranjosti pa smo nasli vred-
nost —1, je globalni minimum na krogu enak —1 in je dosezen v tocki
(—1,0). Najvecja vrednost na krogu je 8, doseZena v tocki (2,0).

Sklep:

’Edina stacionarna tocka je (—1,0) in je strogi lokalni minimum. ‘

’ Globalni minimum na krogu: fmin = —1 v tocki (—1,0). ‘

’Globalni maksimum na krogu: fiax = 8 v tocki (2,0). ‘

Dvojni integral

Dvojni integral definiramo podobno, kot smo definirali dolo¢en integral, s
pomocjo integralskih vsot:

p(Dy)—0

J[t@pazay= 1 3 fowp)pD).
D k

V primeru dvojnega integrala sestevamo prostornine posplosenih valjev.
Dvojni integral izra¢unamo s pomocjo dvakratnega integrala:

[ r@wardy= | ’ ( /g ?()) f(z,9) dy> dz.
D

Primer. Naj bo D trikotnik z oglisci (0,0), (1,0) in (1, 1), torej

D={(z,y) eR*|0<z<1,0<y <z}

//(x—i—y)dxdy.

D

Izra¢unajmo dvojni integral
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Ker je podrocje oblike

D={(z.y)|a<e<b gx)<y<h()}

lahko pisemo

é/(m%—y)dxdy:/ol (/()x(x—i-y)dy)dx.

Najprej izracunamo notranji integral po y:

y2

2

x
2?2 3,

/O(x—l—y)dy:/O a:dy—i—/o ydy = z[yl; +

Zato dobimo

13 331" 31 1
dedy= | S22dz==|"| =2.2 ==,
é/(ﬁy)xy /02”3 v 2[31 2372

Torej je
1
//(:c+y)dxdy: 3
D

Funkcijske vrste

Spomnimo se, kaj je to stevilska vrsta. Dano imamo neko zaporedje realnih
stevil
ai, a2,as, ...

Kaj bi bila vsota neskonc¢no ¢lenov tega zaporedja?

Stevilske vrste

Definicija. Naj bo {a,} zaporedje realnih stevil. Izraz
oo
ai tazxtag+---= Zan
n=1

imenujemo stevilska vrsta (ali na kratko: wrsta), stevilo a,, pa imenujemo
splosni c¢len wvrste.
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S pomocdjo ¢lenov zaporedja {ay} definiramo novo zaporedje {s,} s ¢leni
s$1 = ay, S2 = a1 + ag, ceey Snzzai,

ki jih imenujemo delne vsote.
Vrsta

(%9
> an
n=1

je konvergentna, ¢e konvergira zaporedje njenih delnih vsot {s,}. Limito
zaporedja delnih vsot imenujemo wsota vrste. Ce vrsta ni konvergentna,
potem pravimo, da je divergentna.

Funkcijske vrste

Definicija. Naj bo {f1, f2, ...} Stevna mnozica realnih funkcij. Potem izraz

fi(z) + fa(x) + f3(x an

imenujemo funkcijska vrsta.
Za vsak zg € R, ki je v definicijskem obmocju vseh funkcij f,, n € N, je

f1(zo) + fa(wo) + f3(o) Z fn(z0)

stevilska vrsta.

Ce za nek xg ta Stevilska vrsta konvergira, potem pravimo, da je funkei-
jska vrsta konvergentna za ta xg, oziroma, da je xg v definicijskem obmocju
funkcijske vrste.

Ce za nek z; Stevilska vrsta divergira, potem pravimo, da je za ta
funkcijska vrsta divergentna; xy ni v definicijskem obmocju funkcijske vrste.

Mnozica vseh vrednosti x, za katere je funkcijska vrsta konvergentna,
sestavlja definicijsko obmocje funkcijske vrste.

Primer

Dane so funkcije f,(z) = (sinz)”. Zanima nas konvergenca funkcijske vrste

o0 o0
an Z sin ) —sinx+(sinx)2+ (sinx)3+...

n=1
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Ce vpeljemo novo spremenljivko y = sin z, potem vidimo, da za vsako
vrednost spremenljivke z dobimo geometrijsko vrsto

(o)
Zy":y+y2+y3+...,
n=1

ki konvergira, ¢e je |y| < 1.
Torej mora biti
|sinz| < 1,

oziroma -
x # 5 +km, keZ.

Funkcijska vrsta
(0.)
Z(sin z)" =sinx + (sinz)? + (sinz)® + ...
n=1

konvergira za vsak « € R, razen za

x:g—i—kﬂ, ke

Potencna vrsta

Definicija. Potencna vrsta je funkcijska vrsta oblike
oo

F(z) = ao+ a1 (z — xo) + ag(x — x0)* + az(x —m0)* + -+ = Z an( —20)",
n=0

pri cemer je zg € R.

Kaj je s konvergenco potencne vrste?

S pomocjo kvocientnega kriterija lahko dolo¢imo konvergencno obmocje
potencnih vrst.

Definicija. Ce za potenéno vrsto 322 ; a,(z — x0)™ obstaja

an

lim

)
n—o0

Qn+41

potem Stevilo
a
R = lim n

n—oo

Gn+41

imenujemo konvergencni polmer potencéne vrste.
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Izrek. Naj bo

o0

Z an(x — x0)"

n=0

potencna vrsta in R njen konvergencni polmer. Potem potencéna vrsta
o za vsak z € (29 — R, zo + R) konvergira,

o zavsak z € R\ [xg — R, 29 + R]| divergira,

Primer

Doloc¢imo konvergencno obmocje za potencne vrste:

o0 :Cn
1. Z<_1)n+17
n=1

)
n

o) "
2. ;H’
o0
3. Zn:cn
n=1

Taylorjeva vrsta

Naj bo dana realna funkcija f, ki je v okolici tocke 0 neskon¢nokrat odvedljiva.
Funkcijo f bi radi v okolici tocke 0 aproksimirali s polinomom stopnje n.
Naj bo
pn(x) = apo + ap1T + an,2x2 + -+ an,nxn
tak polinom n-te stopnje, za katerega velja, da se vsi njegovi odvodi v tocki
0 ujemajo z odvodi funkcije f v tocki 0, torej

PP (0)=f0), i=01,...n

Izra¢unamo:
PO () = pu(2) = ano + an1® + ap2a® + -+ apnz",
p%l)(x) =p,(z) = an1 + 2an 20 + 3an73x2 4+ nanvn:cnfl,

/
n
p'SLQ) (x) = p%(gj) = 2an72 + 3 . 2an73$ + -0+ n(n _ 1)an7nxn72’
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Torej je

Pn(0) = ano = £(0), PL(0) =an1 = f(0), pL0)=2an2 = f"(0), ..., p(0) = nlay, = f™(0).

Od tod dobimo

pn(z) = f(0) + f(0)z + fNQ(O)a;? +o

Polinom

(4) .

n
|
=0 1!

imenujemo Taylorjev polinom stopnje n, vrsto

LSO ;
S 190,

i—0 v

pa Taylorjeva vrsta.
Ce zaporedje polinomov p,, konvergira proti funkciji f, dobimo

% ¢(n)
n=0

n.

Doblejene rezultate za razvoj funkcije v Taylorjevo vrsto okrog tocke
0 lahko hitro posplosimo na rezultate o razvoju v Taylorjevo vrsto okrog
katere druge tocke:

f'(z0)
1!

f//(‘,L,O)
2!

f(@) = f(zo) + (z —x0) + (x —x0)% +...

Taylorjeve vrste nekaterih elementarnih funkcij

1. Eksponentna funkcija f(z) =e¢

Funkcijo f razvijemo v Taylorjevo vrsto tako, da izra¢unamo ustrezne odvode:

N $2 33‘3 Ooxn
-1 ot o= i
e ottt nZ:o”!

Konvergencni polmer je R = oo, torej vrsta konvergira za vsak z € R.
Opomba. Za vrednost x = 1 dobimo

1 1 <1

€:1+1+5+§+'”:ZH
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2. Sinusna funkcija f(z) =sinz

3 5 7 oo 2n+1
X X X X
A TR T nzzo( ) an

Konvergenéni polmer je R = oo, torej vrsta konvergira za vsak z € R.
Opomba. Sinus je liha funkcija, pri razvoju v Taylorjevo vrsto nastopajo
samo lihe potence.
Opomba. Za majhne vrednosti x je

sinz ~ x.

Na primer:
sin 0,01 =~ 0,00999983.

3. Kosinusna funkcija f(z) = cosz

2 4 6 o0 2n
2 2t T
g 1 _ e — —1 n .
cos T st e nE:o( ) 2n)]

Konvergencni polmer je R = oo, torej vrsta konvergira za vsak z € R.
Opomba. Kosinus je soda funkcija, pri razvoju v Taylorjevo vrsto
nastopajo samo sode potence.
Opomba. Za majhne vrednosti z je

2

cosr~1— —.
2

Na primer:
cos 0,01 ~ 0,99995000041.

Opomba: Eulerjeva formula
Ce v razvoju eksponentne funkcije f(z) = e v Taylorjevo vrsto namesto
vstavimo iz, dobimo

z? 3 2t 2o 20

R I I R I

Torej je

iz 1 .%'2 $4 CC6 . CU3 $5 1'7

oziroma
e = cosx + isinz = exp(ix).
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4. Logaritemska funkcija f(z) = log(1 + x)

Ker funkcija logx v okolici x = 0 ni definirana, v Taylorjevo vrsto okrog
tocke 0 razvijemo funkcijo f(x) = log(1 + z):

log(1 + ) x? . 3 2t n i( 1)n+11:”
r)=2r——+————+--= - —.
8 2 "3 1 2 n

Konvergencni polmer je R = 1. Preverimo Se krajisca intervala in dobimo,
da vrsta konvergira za vsak =z € (—1,1].
S pomodéjo razvoja funkcije f(x) = log(1 4+ x) v Taylorjevo vrsto lahko
izrac¢unamo vrednosti logaritma za vsa realna Stevila na intervalu (0, 2].
Primer.

log 1,01 & 0,00995033,  log2 ~ 0,69314718.

5. Binomska vrsta, funkcija f(z) = (14 2)%, a € R\ {0}

Preden bomo lahko zapisali razvoj v Taylorjevo vrsto funkcije f(z) = (1 4+
x)™, m € R, moramo najprej definirati binomski simbol.
Spomnimo se:

(a+0)°=1,

( )1:a+b7

(a+b)? = a® + 2ab + V?,

( )3 = a® + 3a%b + 3ab® + b,

Zam e N, ke NU{0}:

<m>_ m! m(m—1)...(m—k+1)

k)~ Kl(m—k)! ! '

Posplosimo na realne eksponente:

(a)_a(a—l)...(a—k’—i—l) 4 €R, keNU {0}

k k! ’
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Razvijmo sedaj funkcijo f(z) = (14 z)® v Taylorjevo vrsto okrog tocke

1+x)*=1+ <1>x+ <2>x2+~-:nzzo<n>x".

Konvergenéni polmer je R = 1.
Primer. Razvijmo v Taylorjevo vrsto okrog tocke 0 funkcijo /1 + .
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Matrike

7.1 Osnovne definicije

Definicija. Matrika A velikosti m x n je pravokotna shema Stevil, sestavl-
jena iz m vrstic in n stolpcev:

ail a2 e A1n

a1 ago . aon
A=

Aml Am2 ... Gmn

Opomba. Stevila v matriki so lahko tudi kompleksna; mnozico vseh
kompleksnih matrik velikosti m x n oznacimo z My, ,(C) ali na kratko My, ,,.

Matriko velikosti m x 1 imenujemo stolpcna matrika ali stolpec, matriko
velikosti 1 X n pa wvrsticna matrika ali vrstica:

ai
a2

7.1.1 Posebne oblike matrik

Naj bo A € M,, kvadratna matrika (n x n).
Diagonalna matrika. Ce velja a;; = 0 za vsak 7 # j, pravimo, da je
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A diagonalna matrika:

all 0 0
0 a9 0
A= .
0 0 Ann

Ce je A € M, diagonalna matrika, ki ima po diagonali same 1 (torej
a;j =1, ¢ i =j,ina; =0, Ce i # j), jo imenujemo enotska matrika ali
identiteta:

1 0 ... 0

0 1 0
I =

00 ... 1

Zgornjetrikotna in spodnjetrikotna matrika. Naj bo A € M,
kvadratna matrika.
Ce velja a;; = 0 za vsak 7 > j, pravimo, da je A zgornjetrikotna matrika:

all aip ... QA1p
0 as ... aon

A=
0 0 ... apn

Ce velja a;; = 0 za vsak ¢ < j, pravimo, da je A spodnjetrikotna matrika:

ail 0 e 0

as21 Ay ... 0
A=

apl1 Anp2 ... Qpp

7.1.2 Sestevanje in mnozenje s skalarjem

Na mnozici matrik iste velikosti lahko definiramo seStevanje in mnozenje s
skalarjem.
Naj bosta A = (ai;) € My, n in B = (bij) € My, ,,. Potem je

A+ B := (aij) + (bij) = (aij + bij).
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V matri¢ni obliki:

aily a2 ... Qi biin b2 ... bin

as a2 ... a2, bor b2 ... ba,
A+B=| . . I . =

Al Am2 .. Gmn b1 bma ... bmn

a1 +bi1 ap+bi2 ... aip+bi,

a1 +ba1  axx+byw ... az, + by

am1 + bml am2 + bm2 e Qmp Tt bmn

Sestevamo torej istolo¢nicne (istolezne) elemente.
Naj bo A = (aij) € Mp, in X € R. Potem je

M = Maig) = (Nagj),

tj.
all a9 e QA1n )\an )\alg e )\aln
any a9 e aon )\agl )\CLQQ e )\agn
AA =) =
aAml Gm2 ...  Qmn Aaml Aam2 ... Amn

Nevtralni element za seStevanje je nic¢elna matrika

00 ... 0
00 ... 0
00 ... 0

v kateri so vsi elementi enaki 0.

Lastnosti sestevanja matrik:

e A+ B =B+ A (komutativnost),

e (A+B)+C = A+ (B+ () (asociativnost),

o A+ O = A (niCelna matrika je nevtralni element),

o A+ (—A) =0 (vsaka matrika ima aditivni nasprotni element).

Lastnosti mnozenja matrik s skalarjem:
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e MA+ B) = \MA+ AB (distributivnost),
(A + pu)A = NA+ pA (distributivnost),
o (Au)A = A(uA) (asociativnost),
1-

A = A (1 je nevtralni element pri mnozenju s skalarjem).

7.1.3 Transponirana matrika

Naj bo A € My, ,, matrika. Transponirana matrika matrike A je matrika
AT ¢ My, m, ki jo dobimo tako, da zamenjamo vlogi vrstic in stolpcev:

a1 a2 ... Qin ailr a1 ... ami
A a?1 CL'QQ . a?n . AT _ a.12 azy ... Qam2

aml Am2 ... Omn a1pn Aa2n ... OGmnp
Velja:

e (A+B)T =AT + BT,
e (AA)T = AAT.

Simetriéna in posevno simetricna matrika. Naj bo A € M,
kvadratna matrika.

e Cevelja A= AT, pravimo, da je A simetricna matrika.
o Ce velja A= —AT, pravimo, da je A posevno simetricna matrika.
7.1.4 Adjungirana (konjugirano transponirana) matrika, her-
mitske matrike

Naj bo A € M,(C) kvadratna kompleksna matrika. Adjungirana matrika
(ali konjugirano transponirana matrika) matrike A je

A= ZT,

kjer A oznacuje matriko, v kateri vsak element a;; zamenjamo z njegovim
kompleksnim konjugatom a;;.

« Ce velja A = A*, pravimo, da je A hermitska matrika (tudi sebiadjun-
girana matrika).
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o Ce velja A = —A*, pravimo, da je A posevno hermitska matrika.

Trditev. Naj bo A € M,,(C) hermitska matrika, tj. A = A*. Potem so

diagonalni elementi realna stevila: a; € Rzat=1,...,n.
Naj bo A € M,(C) posevno hermitska matrika, tj. A = —A*. Potem
imajo diagonalni elementi nicelni realni del: R(a;;) =0zai=1,...,n.

Dokaz. Zapisimo adjungirano matriko kot A* = (@j;).
« Ce je A hermitska, torej A = A*, veljajo enakosti elementov:
ajj = Qj; za vse i, ].

Za diagonalo dobimo:

i = Qi

Realno stevilo je natanko takrat enako svojemu kompleksnemu konju-
gatu, zato je a;; € R.

« Ce je A posevno hermitska, torej A = —A*, velja

ajj = —Qj; 7a vse i, ],
in za diagonalo
Qj; = —Qgj-
To je ekvivalentno
ai; + a;; = 0.

Ker je a;; + ai; = 2R(ay;), dobimo

2§R(au‘) =0 = §R(a“) =0.

S tem sta obe trditvi dokazane. O

Trditev 7.1.1. Za diagonalne elemente hermitske matrike velja, da so re-
alna Stevila. Torej, ¢e za A € M,(C) velja A = A*, potem je a;; € R,
1=1,...,n.

Za diagonalne elemente posevno hermitske matrike velja, da so njihovi
realni deli enaki nic. Torej, ce za A € M,(C) velja A = —A*, potem je
?R(a“) :07 1= 1,...,n.
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Definicija 7.1.2. Naj bo A € M,,,, in B € M, ,. Potem definiramo pro-
dukt matrik A in B s predpisom

ain a2 - Qip bir -+ by
a1 Q@ -+ G2y bor -+ boy
AB=| . . ) . =
aml1 am2 - Amn bnl e bm“
a11bin + arbor + -+ apbpr - anbyy + -+ arnbnr
a21b11 + agzba1 + - +azpbpr - ao1biy + -+ a2pbny
amlbll + am2b21 + 4 amnbpr - amlblr +---+ amnbm"

Ce oznacimo C = AB, torej (c;;) = (aij)(bij), potem je
n
cij = aitbij + aiobo; + - + ainbpj = Z aitbrj-
k=1

Opomba 7.1.3. Element c¢;;, ki lezi v i-ti vrstici in j-tem stolpcu matrike
AB, dobimo tako, da izracunamo skalarni produkt i-te vrstice matrike A in
j-tega stolpca matrike B.

Opomba 7.1.4. Produkt AB matrik A in B je definiran samo v primeru,
ko ima matrika A toliko stolpcev, kot ima matrika B vrstic. Ce je torej
A€ My, in B € M,,, potem produkt AB obstaja samo, ce je n = p.
Dobljena matrika AB je potem dimenzije m X r in zato element prostora
My .

Za mnozenje matrik veljajo naslednje lastnosti:

e« (AB)C = A(BC) (asociativnost),

e A(B+C)=AB+ AC (distributivnost),

e (B+C)A=BA+CA (distributivnost),

o v splosnem AB # BA  (ne velja komutativnost),
e iz AB = 0 ne sledi nujno, da je A =0 ali B =0.

() )

Izracunajmo A?, AB in BA.

Primer 7.1.5.
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Naj bosta A, B € M,, kvadratni matriki. Potem velja:
e (AB)T = BT AT,

Definicija 7.1.6. Naj bo A € M,,. Ce obstaja taka matrika A~ € M, da
velja
AA =A"1A =1,

potem pravimo, da je A obrnljiva ali nesingularna matrika in da je A~!
inverzna matrika matrike A.

Opomba 7.1.7. Za dano matriko A njena inverzna matrika ne obstaja

nujno. Na primer,
01
A =

je singularna, torej neobrnljiva. Kdaj je neka matrika nesingularna in kako
lahko izracunamo njen inverz, si bomo ogledali kasneje.

Trditev 7.1.8. Za inverz produkta matrik A, B € M, velja
(AB)"'=B7tA™L
Definicija 7.1.9. Naj bo A € M,,. Ce velja
AA* = AA =1,
potem pravimo, da je A unitarna matrika.
Unitarna realna matrika se imenuje ortogonalna matrika.
Opomba 7.1.10. Ce je A € M,, unitarna matrika, potem je A* inverzna
matrika matrike A.

Determinanta

Naj bo A € M,, kvadratna matrika. Oznacimo z A;; € M,_1 kvadratno
matriko dimenzije (n — 1) x (n — 1), ki jo dobimo tako, da pri matriki A
izbrisemo i-to vrstico in j-ti stolpec.

Definicija 7.1.11. Determinanta, oznac¢imo jo z det, je preslikava iz pros-
tora M,, kvadratnih matrik dimenzije n X n v realna stevila, torej determi-
nanta kvadratno matriko A € M,, dimenzije n x n preslika v realno stevilo
det A € R.
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Determinanto lahko definiramo rekurzivno glede na dimenzijo n prostora
M,, s pomocjo razvoja, npr. po prvi vrstici:

det(a11) = an.

a a
et <a11 a12> = (=1)"a11 det A1 +(-1)""arp det Arp = ar1a2—azaz:.
21 22

ai;p ai2 ais
det | as1 agse asgs | = (—1)1Ha11 det A11 + (—1)1+2a12 det A1 + (—1)1+3a13 det Aq3
azy as2 ass

= ay1 det A1 — ajodet Ao + agz det A;3

= a11(ageas3 — agzasz) — a12(az1ass — agzasi) + a13(ag1asz — ageasy).

e poljuben n:

a1 a2 - Qip
Gg1 a2 - A2p L 4
det . . . . = Z(—l)prjalj det Alj.
: : P =
Gpl anp2 - dnn

Trditev 7.1.12. Determinanto matrike A € M, lahko izracunamo tako, da
jo razvijemo po katerikoli vrstici, torej

n
det A= Z(—l)i+jaij det Aij.
j=1
Definicija 7.1.13. Stevilo (—1)/ det A;; imenujemo kofaktor elementa a;;,
ki lezi v i-ti vrstici in j-tem stolpcu.
Opomba 7.1.14. Determinanto lahko oznac¢imo tudi na naslednji nacin:

aip ai2 -+ Gip aip a2 -+ Glp

a1 a2 - Gy a1 G2 -+ G2y
det . . ' ) =

Gn1 Aanp2 - dpn anl1 Aap2 - Aapn
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Opomba 7.1.15. Pri izracunu determinante velikosti 3 x 3 si lahko po-
magamo tudi s Sarrusovim pravilom. Prepisemo 2 stolpca in izracunamo 6
produktov “diagonal”. To pravilo velja samo za izracun determinante ma-
trike velikosti 3 x 3.

Opomba 7.1.16. Pri dolo¢anju pozitivnega in negativnega predznaka si
lahko pomagamo s “Sahovnico”.

Opomba 7.1.17. Racunanje determinante je ¢asovno zelo potratno.

Lastnosti determinante
Naj bo A € M,, kvadratna matrika dimenzije n x n.
e Determinanta se ne spremeni, ¢e zamenjamo vlogo vrstic in stolpcev:

det A = det AT.

o Ce pri kvadratni matriki zamenjamo dve vrstici, se determinanti spre-
meni predznak. Naj bo B € M, matrika, ki jo dobimo tako, da pri
matriki A zamenjamo k-to in I-to vrstico, k # [. Potem je

det B = — det A.

o Ce ima matrika A dve enaki vrstici ali dva enaka stolpca, potem je
det A = 0.

« Ce pri matriki A vse elemente neke vrstice pomnozimo z istim faktor-
jem A € R, potem ima dobljena matrika determinanto, ki je za faktor
A vecja od prvotne.

« Ce za kvadratno matriko A velja, da je njena k-ta vrstica veckratnik
[-te vrstice, potem je det A = 0.

o Ce pri kvadratni matriki A katerikoli vrstici pristejemo katerokoli
drugo vrstico, potem ima dobljena kvadratna matrika B isto deter-
minanto kot A, torej det A = det B.

e Naj bo A zgornje trikotna matrika. Potem je njena determinanta
enaka produktu njenih diagonalnih elementov:
air a2 - Qlp
0 az - a2
det | . . .| = aa22- - ang.

0 0 - apn
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e V posebnem primeru, ko je A diagonalna kvadratna matrika, je

det A = aj1a22 -+ - app.-

Opomba 7.1.18. Z upostevanjem navedenih lastnosti lahko matriko pre-
oblikujemo do zgornje trikotne matrike, ki ima enako determinanto kot pr-
votna matrika, determinanta zgornje trikotne matrike pa je enaka produktu
diagonalnih elementov.

Determinanta ima tudi naslednjo pomembno lastnost, ki jo imenujemo
multiplikativnost.

Trditev 7.1.19. Naj bosta A, B € M,,. Potem velja

det(AB) = det A - det B.

Posledica:

1
71 _
det A7 = Tt

Dokaz. Ker je detI =1, je
1 =det]=det(AA™") =det A -det A,
torej

1
det A7 = .
¢ det A

O

Izrek 7.1.20. Naj bo A € M, kvadratna matrika. Potem je A obrnljiva
matrika natanko tedaj, ko je

det A # 0.
Drugace povedano, matrika A € M, je singularna natanko tedaj, ko je
det A = 0.
7 izra¢un determinante matrike dimenzije n X n je potrebno izracunati

n! produktov. Racunanje determinante poskusamo poenostaviti z uposte-
vanjem razli¢nih lastnosti determinante.
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Uporaba determinante

Determinanto sreCamo pri zelo razlicnih temah, na primer:
e resevanje sistemov linearnih enacb,
e racunanje inverznih matrik,
e preverjanje koplanarnosti vektorjev,
e racunanje prostornine,
e racunanje vektorskega produkta,
e preverjanje linearne neodvisnosti resitev diferencialnih enacb,
« iskanje ekstremov funkcij ve¢ spremenljivk,
e racunanje rotorja vektorskega polja,

o itd.

Rang matrike

Definicija 7.1.21. Rang matrike A € M,, ,, ki ga oznac¢imo z rang A, je
dimenzija najvecje nenicelne poddeterminante te matrike.

Opomba 7.1.22. Torej je rang A = k, ¢e obstaja taka podmatrika Ay
dimenzije k x k, za katero je det A # 0, za vsak [ > k pa je det A; = 0 za
vsako podmatriko A; dimenzije [ x [. Matrika ima rang 0, ¢e so vsi njeni
elementi enaki nic.

Opomba 7.1.23. Rang je definiran tudi za pravokotne matrike. Velja
rang A < min{m,n}.

Opomba 7.1.24. Matrika A € M, je nesingularna natanko tedaj, ko je
rang A = n. Matrika A € M, je singularna natanko tedaj, ko je rang A < n.

Ker smo rang matrike definirali s pomocjo determinante, hitro prever-
imo, da za rang matrike veljajo podobne lastnosti kot za determinanto:

o rang matrike se ne spremeni, ¢e zamenjamo vlogo vrstic in stolpcev:

rang A = rang AT,
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e Ce pri matriki zamenjamo dve vrstici, se rang ne spremeni. Naj bo
B € M, matrika, ki jo dobimo tako, da pri matriki A zamenjamo k-to
in [-to vrstico, k # [. Potem je

rang B = rang A,
e Ce pri matriki A vse elemente neke vrstice pomnozimo z istim nenicel-

nim faktorjem A € R, potem ima dobljena matrika enak rang kot
prvotna,

o Ce pri matriki A katerikoli vrstici pristejemo katerokoli drugo vrstico,
potem ima dobljena matrika B enak rang kot A, torej rang A = rang B,

e mnaj bo A “zgornje trikotna” matrika. Potem je njen rang enak Stevilu
njenih nenicelnih vrstic.

Opomba 7.1.25. Z upostevanjem navedenih lastnosti lahko matriko pre-
oblikujemo do “zgornje trikotne” matrike, ki ima enak rang kot prvotna
matrika; rang “zgornje trikotne” matrike pa je enak Stevilu nenicelnih vrstic.

Linearna regresija (OLS). Naj imamo podatke (z;,y;) zai =1,...,n
in linearni model

yi = Po+ Bizi + &
Oznac¢imo residuum pri i-tem podatku z

ri(Bo, B1) = yi — (Bo + Brxi).

Metoda najmanjsih kvadratov izbere parametra [y, 81 tako, da minimizira
vsoto kvadratov residuov

S(Bo, B1) = > _ri(Bo, 1) ZZ(yi*ﬂO*ﬂmi)Q.
i=1 i

V matri¢ni obliki zapisemo

1 I
L2 Bo y.l
Yy = Xﬂ + g, X = . . ) 5 - 61 I Yy = .
1z, Yn
Tedaj je vektor residuov
T(ﬁ) =Y — Xﬁ?

in funkcija, ki jo minimiziramo, je

ly — XBI1> = (y — XB)" (y — XB).
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Izpeljava normalnih enacb z delnimi odvodi (komponentno)

Zacnimo s skalarno funkcijo

n

S(Bo, B1) =Y _(yi — Bo — Przi)*.

i=1

Parcialni odvod po (y. Za vsak ¢len uporabimo pravilo verige:

8850(% — Bo — Bri)? = 2(yi — Bo — Prs) - ;20(% — Bo — Brx;).
Ker je
9 (i~ o — prz) = —1
960 Yi 0 124 )
dobimo 9
%(yi — Bo — Brx:i)* = =2(y; — Bo — Prws).
Sestejemo po i:
0S "
By —2 ;(yi — Po — Brxi).

V minimumu mora veljati g—ﬁso = 0, zato

n

> (yi — Bo — Prx;) = 0.

i=1
To preuredimo v
n n
Y yi—nfo—p1Y xi =0,
i=1 i=1
torej

n n
nfo+ 1Y =Y yi
i=1

=1

Parcialni odvod po ;. Spet uporabimo pravilo verige:

0 0
b1

Ker je

Ip

(98/81('!/1' — Bo — brzi) = —x4,

—(yi — Bo — Brxi)* = 2(yi — Bo — Br1xi) - == (yi — Bo — B1xi).

(E1)
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dobimo

0
9/

Sestejemo po i:

( BO lez) = _21:1,( Yi BO - lez)-

8751 *22% i — Bo — Bix;).

V minimumu mora velJatl W =0, zato

n
sz(yz — Bo — Brxi) =0
i=1

Razsirimo:

n n n
dowiyi—Bod wi— Py xi =0
i=1 i=1 i=1

torej

n n n
Bod wi+Prd i = wiy (E2)
i=1 i=1 i=1

Enacbi (E1) in (E2) sta normalni enacbi v komponentni obliki, v matri¢ni
obliki jih zapisemo kot
XTX3=XxTy.
Ce je rang(X) = 2, je matrika X7 X obrnljiva in resitev je enoli¢na:

B = (XTX)"'xTy,.

Kdaj pade rang in zakaj tedaj resitev ni enolicna?
Matrika X ima stolpca

1 T

in

1 Tn
Velja rang(X) < 2 natanko tedaj, ko sta stolpca linearno odvisna, tj. ko
obstaja konstanta c, da je

(z1,...,2,)T =¢(1,..., )T,
kar pomeni
T =Ty =" "= Tnp.

V tem primeru naklona ; ne moremo enoli¢no dolo¢iti, zato resitev prob-
lema najmanjsih kvadratov ni enoli¢na.
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Slucajni vektorji

Diskretni slucajni vektor

Definicija 8.0.1. Za gostoto verjetnosti fxy (x,y) slucajnega vektorja diskret-
nih spremenljivk (X,Y) velja:

s fxv(z,y) =0,
« D> fxv(zy) =1,
oy
o fxy(z,y)=P[X =z, YV =y
Ce so mozne vrednosti X in Y podane z {x;} in {yx}, pogosto pisemo

Ixv (@i, yk) = pik-

Posamezne verjetnosti (marginali)

Definicija 8.0.2. Naj bo fxy(z,y) skupna gostota sluc¢ajnega vektorja
diskretnih spremenljivk (X,Y’). Potem sta posamezni gostoti (marginali)
diskretnih sluc¢ajnih spremenljivk X in Y:

fx(@)=PX =2] =) fxv(z,y), fry) =PY =yl=> fxv(z,y).

V zapisu pi; (za x = x;, y = yx) dobimo:

pi =P X =)= pir, pr=PY =u]=> pir
!

103
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Pric¢akovana vrednost in varianca

Trditev 8.0.3.

E(X)=px =) zfx(z) = Zﬂf(z ny(x,y)) = > =z fxy(z,y).

T T

V(X)=0% => (x—px)fx(z) =D (z— px)*fxy(z,y)
z oy

xT

Analogno velja za E(Y') in V(Y).

Pogojna gostota
Definicija 8.0.4. Naj bo fxy (z,y) skupna gostota. Pogojna gostota (pogo-

jna porazdelitev) diskretne sluc¢ajne spremenljivke Y pri pogoju X = z je

Ixvy(z,y)
fx(@) 7

fyiz(y) =PlY =y | X =1] = za fx(z) > 0.

Neodvisnost

Trditev 8.0.5. Diskretni slucajni spremenljivki X in'Y sta neodvisni natanko
tedaj, ko velja katerakoli od naslednjih trditev:

o fxv(zy) = fx(@)fy(y) za vse z,y,

« fye() = fr(y) za vse z,y 2 fx(x) >0,

« fxp(@) = fx(@) 20 vse z,y 2 fy(y) >0,

e P[X€ A Y € Bl =P[X € A|P[Y € B] za vse mnozice A, B.

Opomba 8.0.6. Ce mnozica tock z neni¢elno verjetnostjo dvorazsezne diskretne
slucajne spremenljivke (X,Y’) ne tvori pravokotnika, potem X in Y nista
neodvisni (pozitivha verjetnost ene spremenljivke omeji zalogo vrednosti
druge spremenljivke). Ce mnozica tock z nenicelno verjetnostjo tvori pra-
vokotnik, sta X in Y lahko neodvisni, vendar ne nujno (pravokotnik je
potreben, ni pa zadosten pogoj za neodvisnost).

Primer 8.0.7 (Skupna porazdelitev, marginali, pogojna verjetnost, (ne)neodvisnost).
Naj bo X € {0,1} in Y € {0,1} ter

Poo = 0.20, Po1 = 0.30, P1o = 0.10, P11 = 0.40.
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Marginali:
fX(O) = poo + Po1 = 050, fX(l) =pio+pi11 = 050’
fv(0) = poo + p1o = 0.30,  fy (1) = po1 + p11 = 0.70.

Pogojna verjetnost:

~por 030
~ fx(0) 050
KerjeP(Y =1)=0.70, velja P(Y =1 | X =0) #P(Y = 1), zato X in Y
nista neodvisni. Ekvivalentno: pgg = 0.20 # fx(0)fy(0) = 0.50 - 0.30 =
0.15.

P(Y=1|X=0) 0.60.

Primer 8.0.8 (Skupna porazdelitev, marginali, pogojna verjetnost, neod-
visnost). Naj bo X € {0,1} in Y € {0, 1} ter

poo = 0.21,  po1 = 0.49, p1o=0.09, p11 =0.21.
Marginali:
fx(0) = poo + po1 = 0.70,  fx(1) = p1o + p11 = 0.30,
fy(0) = poo + p1o = 0.30,  fy (1) = po1 + p11 = 0.70.

Pogojna verjetnost:

0.70.

Po1 0.49

Ker je P(Y = 1) = fy(1) = 0.70, velja P(Y =1 | X =0) = P(Y = 1).
Podobno dobimo tudi P(Y = 1| X = 1) = 0.70, zato sta X in Y neodvisni.
Ekvivalentno: za vse x,y € {0,1} velja

Py = fX(x)fY(y)v
npr. poo = 0.21 = 0.70 - 0.30 in p1; = 0.21 = 0.30 - 0.70.

Diskretni slucajni vektor z n komponentami

Definicija 8.0.9. Gostota verjetnosti n-razsezne diskretne slucajne spre-
menljivke (X7,...,X,) je

Ixiox, (1, zn) = P[X1 = 21,0, Xy = 5],

Trditev 8.0.10. Diskretne slucajne spremenljivke X1, ..., X, so neodvisne
natanko tedaj, ko velja

le"'Xn(x17 s 73371) - fX1 (xl) T an(xn)'
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Multinomska sluc¢ajna spremenljivka

Definicija 8.0.11. Multinomska verjetnostna porazdelitev je posplositev
binomske porazdelitve. Denimo, da n-krat ponovimo poskus:

o rezultat vsakega poskusa pripada enemu izmed k razredov,
o rezultat poskusa je v i-tem razredu z verjetnostjo p;, i =1,...,k,
o poskusi so med seboj neodvisni,
« Pt pe= 1
Naj X; oznacuje stevilo poskusov, ki so v i-tem razredu. Potem velja

n! .
—_— 1... xk
a;1!~--:ck!p1 Pi

P[Xlle,...,Xk:l'k]:
kjer je z1 + -+ - + x1, = n.

Primer 8.0.12 (Transport elektronskih naprav). Pri transportu elektron-
skih naprav so se 4 naprave prevrnile. V preteklosti je imelo 60% prevrnjenih
naprav vecje poskodbe, 30% manjse poskodbe, 10% pa ni bilo poskodovanih.

o Koliksna je verjetnost, da imata 2 vecje poskodbe in 2 manjse poskodbe?
Naj bo p1 = 0.6, p2 = 0.3, p3 = 0.1, n =4 in (x1, 22, 23) = (2,2,0):

4l

P= m(0.6)2(0.3)2(0.1)0 =6-0.36-0.09 = 0.1944.

o Koliksna je verjetnost, da nobena naprava ni poskodovana?
To pomeni (z1,z2,z3) = (0,0,4), zato
P = (0.1)* = 0.0001.

Slucajni vektorji zveznih spremenljivk

Definicija 8.0.13. Za gostoto verjetnosti fxy(z,y) sluéajnega vektorja
zveznih spremenljivk (X,Y) velja:

® fXY(fU>y) > 0,

-/ / Ixy(z,y)dedy =1,
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e za vsako obmocje R v ravnini:

P[(X,Y) e R] = //foy(a:,y) dx dy.

Opomba 8.0.14 (Posamezne gostote in pricakovanja). Posamezni gostoti
(marginali) dobimo z integriranjem po drugi spremenljivki:

fx(z) = /O:O fxy(z,y)dy, fr(y) = /O:o fxy(z,y)dz.

Za poljubno funkcijo g velja

Eg(X,Y)] = /_O:O/_O; 9(z,y) fxy(z,y) dz dy,

posebej

B = [[epov@ydedy,  BQ) = [[yfereydedy,  EQY) = [[ay frv(a.y) dody.

Definicija 8.0.15 (Neodvisnost zveznih slucajnih spremenljivk). Zvezni
slucéajni spremenljivki X in Y sta neodvisni, ¢e za vsaki (Borelovi) mnozici
A, B C R velja

P(Xe€A YeB)=P(Xe€A) PY €B).

Trditev 8.0.16 (Ekvivalentne karakterizacije). Naj ima par (X,Y) skupno
gostoto fxy(x,y) in marginali fx(x), fy(y). Potem so naslednje trditve
ekvivalentne:

e X inY sta neodvisnai.

e Skupna gostota se faktorira:
fxv(z,y) = fx(@) fr(y) za vsez,y.
o Pogojna gostota je enaka marginalni (kjer je fx(x) >0):
fyix=2(y) = fy(y) za vsex,y.

o Skupna porazdelitvena funkcija se faktorira:

Fxy(z,y) =P(X <z, Y <y) = Fx(x) Fy(y) =za vse x,y.



108 CHAPTER 8. SLUCAJNI VEKTORJI

Definicija 8.0.17 (Pogojna gostota (zvezni primer)). Naj imata (X,Y)
skupno gostoto fxy (x,y) in naj bo marginalna gostota

T) = /O:o fxy(z,y)dy

Ce je fx(z) > 0, potem je pogojna gostota slucajne spremenljivke Y pri
pogoju X = x definirana z

fY|X:x(y) = w

Pogojna porazdelitvena funkcija je
Yy
Fyix—(y) =PY <y| X =2)= / fy|x=2(t)dt.
—00

Primer 8.0.18 (Neodvisnost preko faktorizacije gostote). Naj bosta X ~
Unif(0,1) in Y ~ Unif(0, 1) neodvisni. Tedaj je
I, 0<2<1 0<y<lI,

0, sicer,

Ixy(z,y) = {

in marginali sta

00 1, 0<z<1, 1, 0<y<1,
:/_ fXY(xay)dy:{ fY(y):{ .

0, sicer, 0, sicer.

Ker velja fxy(z,y) = fx(z)fy(y), sta X in Y neodvisni. Na primer,

1/2 ,1/3
—/ / 1dydw—f: P(X <

Primer 8.0.19 (Odvisnost zaradi podpore, ki ni pravokotnik). Naj bo
X enakomerno porazdeljena na (0,1), pri pogoju X = z pa naj bo Y
enakomerno porazdeljena na (0,x). Tedaj je skupna gostota (po Definiciji
8.0.17)

P(X < JP(Y < 3).

l\’)\)—l
O.J\)—l
DO|—
W=

1

Ixy (@, y) = {W

0, sicer.

I<y<z<l,

Preverimo, da je to res gostota: fxy(z,y) >0 in

// fxywydyd:v—//dydw—/li[y}zdxz/olldx:L
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Zato fxy res doloca skupno porazdelitev.
Podpora {(z,y) : 0 < y < & < 1} je trikotnik (ni pravokotnik), zato X
in Y ne moreta biti neodvisni. Na primer,

1 min(0.9,z) |
P(Y <09]X =02) =1, P(Y§0.9):// S dyde < 1,
0 Jo x
torej P(Y <0.9| X =0.2) # P(Y <0.9).

Kovarianca in korelacija
Definicija 8.0.20 (Kovarianca). Naj bosta X in Y slucajni spremenljivki
z E(X) = ux in E(Y) = py. Kovarianca je definirana kot

cov(X,Y) = oxy = E[(X — px)(Y — py)] = E(XY) — pxpy-
Posebej velja cov(X, X) = V(X) = 0%.

Definicija 8.0.21 (Korelacija). Ce sta ox > 0 in oy > 0, je korelacija

definirana kot
cov(X,Y)  oxy

VX)VY) oxoy’

PXY =
Trditev 8.0.22. Velja
—1<pxy <1
Poleg tega je pxy = 1 natanko tedaj, ko je Y =aX +0b, a > 0in pxy = —1
natanko tedaj, ko je Y =aX + b, a < 0.

Opomba: neodvisnost = nekoreliranost. Ce sta X in Y neodvisni in
imata kon¢na pricakovanja, potem

E(XY)=E(X)E(Y),
zato

COV(X,Y) :E(XY)—E(X)E(Y):O = pxy =0 (ée ox,0y >0).

Zakaj obrat ne velja? (ideja in mini primer) Nires, dacov(X,Y) =0
vedno pomeni neodvisnost. Na primer: naj bo X ~ Unif(—1,1) in Y = X?2.
Tedaj Y ni neodvisna od X (ker Y je dolocena iz X)), vendar:

cov(X,Y) = E(XY)-E(X)E(Y) = E(X*)—E(X) E(X?) = 0-0-E(X?) =0,

ker je E(X) = 0 in zaradi simetrije E(X3) = 0. Torej sta X in Y nekoreli-
rani, a ne neodvisni.
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Primer 8.0.23 (Skupna porazdelitev in Z = 2X 4+ 3Y'). Naj bo X € {0,1}
inY € {0,1} ter

poo = 0.20, po1 = 0.30, p10=0.10, p1; = 0.40.

Marginali:
P(X =0) =0.20 + 0.30 = 0.50, P(X
P(Y =0) =0.20+ 0.10 = 0.30, PY

1) = 0.10 + 0.40 = 0.50,
1) = 0.30 + 0.40 = 0.70.

Pricakovana vrednost. Ker je X,Y Bernoullijevi, dobimo
E(X)=P(X =1)=0.50, E(Y)=P(Y =1) =0.70.
Definirajmo Z = 2X + 3Y. Tedaj
E(Z)=FE(2X+3Y)=2E(X)+3E(Y)=2-0.50+3-0.70 = 3.10.

Varianca s pomocjo kovariance. Uporabimo formulo
Var(2X +3Y) =4 Var(X) + 9 Var(Y) + 12 cov(X, Y).
Ker je X € {0, 1}, velja
Var(X) =p(l —p) =0.5-0.5 = 0.25, Var(Y) =0.7-0.3 = 0.21.
Kovarianco izra¢unamo iz
cov(X,Y)=E(XY)—- E(X)E(Y).
Tu je XY = 1 natanko takrat, ko sta X =1in Y =1, zato
E(XY)=P(X=1,Y =1) =p;; = 0.40.

Sledi
cov(X,Y) = 0.40 — (0.50)(0.70) = 0.40 — 0.35 = 0.05.

Zato
Var(Z) =4-0.25+9-0.21 +12-0.05 = 1 + 1.89 + 0.60 = 3.49.

Sklep: FE(Z)=3.10 in Var(Z) = 3.49.

Definicija 8.0.24 (Dvorazsezna normalna porazdelitev). Dvorazsezna nor-
malna porazdelitev ima gostoto

fxy(z,y) =

+

1 o (_ 1 ((w — px)? C 2pxy (@ —px)(y—py) | (Y- fy)?
2( )

2 2
1—p%y ox ox0oy

2noxoyy/1 — pﬁ(y

2

Oy

)
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Geometrija korelacije pri dvorazsezni normalni porazdelitvi

Naj bo (X,Y’) dvorazsezno normalno porazdeljena s povprecjem

_ [ MX
in kovarian¢no matriko

2 2
oxXy Oy pPOXOY 0y

Po standardizaciji

X - -
7z, = =X Zy = a8

ox Oy

dobimo Z = (Z1, Z2)T ~ N(0, R), kjer je korelacijska matrika

(1)



