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Chapter 1

Verjetnost

1.1 Uvod

V vsakdanjem življenju se nenehno srečujemo z negotovostjo in variabil-
nostjo. Ali bo jutri deževalo? Kakšen bo dobiček podjetja v prihodnjem
četrtletju? Kakšen je učinek novega zdravila pri zdravljenju določene bolezni?
Težave, ki vključujejo negotovost, so v središču zanimanja verjetnostne teorije.

Verjetnost je matematični okvir, ki omogoča analizo naključnih pojavov.
Služi kot temelj za statistiko, disciplino, ki omogoča sklepanje na podlagi
podatkov. Statistika in verjetnost sta tesno povezani: statistika uporablja
orodja verjetnosti, da bi naredila sklepne postopke, medtem ko se verjetnost
ukvarja z modeliranjem naključnih poskusov.

V tem poglavju bomo uvedli osnovne pojme verjetnosti. Najprej bomo
opisali vzorčne prostore in dogodke, nato pa formalizirali pojmovanje verjet-
nostnih mer. Kasneje bomo razvili osnovne metode za računanje verjetnosti,
ki vključujejo kombinatorične principe, pogojno verjetnost in neodvisnost
dogodkov. Na koncu bomo nakazali, kako se te ideje uporabljajo v statistiki
in drugih področjih znanosti.

1.2 Vzorčni prostori

Pri obravnavi negotovih pojavov začnemo z natančno določitvijo vseh možnih
izidov, ki jih lahko dobimo pri naključnem poskusu. Množico vseh možnih
izidov imenujemo vzorčni prostor in jo običajno označimo s Ω.

Primer 1.2.1. Če vržemo kovanec, sta možna izida grb (G) ali cifra (C).
Torej je vzorčni prostor Ω = {G, C}.
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Primer 1.2.2. Če vržemo standardno šeststransko kocko, so možni izidi
cela števila od 1 do 6. Torej je vzorčni prostor Ω = {1, 2, 3, 4, 5, 6}.

Primer 1.2.3. Če opazujemo čas (v minutah), ki ga potnik čaka na avtobus,
je vzorčni prostor Ω = [0, ∞), ker so možne vse nenegativne realne vrednosti.

Vzorčni prostori so lahko:

• diskretni, če je vseh možnih izidov končno ali števno neskončno,

• zvezni, če so možni izidi predstavljeni s točkami na realni osi oziroma
na uniji intervalov.

Dogodki

Definicija 1.2.4. Dogodek je poljubna podmnožica vzorčnega prostora Ω.
Dogodek A ⊆ Ω se zgodi, če je dejanski izid naključnega poskusa element
množice A.

Primer 1.2.5. Pri metu kocke je dogodek »pade sodo število« množica
A = {2, 4, 6}. Če pade 4, rečemo, da je dogodek nastopil.

Operacije na dogodkih

Ker so dogodki množice, lahko z njimi izvajamo običajne množične operacije:

• Unija: A ∪ B = {ω ∈ Ω : ω ∈ A ali ω ∈ B}. To je dogodek, da se
zgodi A ali B (ali oba).

• Presek: A ∩ B = {ω ∈ Ω : ω ∈ A in ω ∈ B}. To je dogodek, da se
zgodita A in B hkrati.

• Komplement: Ac = {ω ∈ Ω : ω /∈ A}. To je dogodek, da se A ne
zgodi.

• Razlika: A \ B = {ω ∈ Ω : ω ∈ A in ω /∈ B}. To je dogodek, da se
zgodi A, a ne B.

Primer 1.2.6. Naj bo Ω = {1, 2, 3, 4, 5, 6} pri metu kocke. Če je A =
{2, 4, 6} (soda števila) in B = {1, 2, 3} (števila ≤ 3), potem:

A ∪ B = {1, 2, 3, 4, 6}, A ∩ B = {2}, Ac = {1, 3, 5}, A \ B = {4, 6}.
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Posebni dogodki

• Gotov dogodek: A = Ω, ki se vedno zgodi.

• Nemogoč dogodek: A = ∅, ki se nikoli ne zgodi.

• Elementarni dogodek: A = {ω} vsebuje natanko en izid.

Disjunktni dogodki

Dogodka A in B sta nezdružljiva (disjunktna), če je A ∩ B = ∅. Takrat se
ne moreta zgoditi hkrati.

Zakoni za množice

Operacije z dogodki zadoščajo naslednjim zakonitostim (za vse dogodke
A, B, C):

• Komutativnost:

A ∪ B = B ∪ A, A ∩ B = B ∩ A.

• Asociativnost:

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C).

• Distributivnost:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

De Morganova zakona

Za vsaka dogodka A in B veljata pravili:

(A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

Primer 1.2.7. Če A pomeni »pade soda številka«, B pa »pade število
večje od 4«, potem A ∪ B pomeni »pade soda številka ali številka večja od
4«. Komplement dogodka je »pade liha številka, ki ni večja od 4«, kar je
množica {1, 3}. Po De Morganovem zakonu je to enako kot Ac ∩ Bc.
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1.3 Verjetnost
Ko imamo definiran vzorčni prostor Ω in dogodke kot njegove podmnožice,
želimo tem dogodkom prirediti številske vrednosti, ki odražajo njihovo ver-
jetnost. To formaliziramo z uvedbo verjetnostne preslikave (ali na kratko
verjetnosti).

Definicija 1.3.1. Verjetnost je preslikava

P : F → [0, 1],

kjer je F družina podmnožic vzorčnega prostora Ω, za katero veljajo nasled-
nji aksiomi:

1. P (Ω) = 1,

2. Za vsak dogodek A ∈ F velja 0 ≤ P (A) ≤ 1,

3. Če sta A in B nezdružljiva dogodka (A ∩ B = ∅), potem

P (A ∪ B) = P (A) + P (B).

Izpeljane lastnosti verjetnosti

Iz zgornjih treh aksiomov lahko izpeljemo več uporabnih zakonitosti.

1. Verjetnost nemogočega dogodka. Ker velja P (Ω) = 1 in Ω∪∅ = Ω,
dobimo

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅),
od tod P (∅) = 0.

2. Komplement dogodka. Za vsak dogodek A velja Ω = A ∪ Ac in
A ∩ Ac = ∅. Po aksiomu aditivnosti:

P (Ω) = P (A ∪ Ac) = P (A) + P (Ac).

Ker je P (Ω) = 1, dobimo

P (Ac) = 1 − P (A).

3. Monotoničnost. Če je A ⊆ B, potem velja B = A ∪ (B \ A) in
A ∩ (B \ A) = ∅. Torej

P (B) = P (A) + P (B \ A) ≥ P (A),

saj je P (B \ A) ≥ 0.
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4. Formula za unijo dveh dogodkov. Za poljubna A, B velja

A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B),

pri čemer so množice na desni paroma disjunktne. Torej

P (A ∪ B) = P (A \ B) + P (B \ A) + P (A ∩ B).

Ker velja P (A) = P (A \ B) + P (A ∩ B) in P (B) = P (B \ A) + P (A ∩ B),
sledi

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Te lastnosti se uporabljajo pri praktičnem računanju verjetnosti.

Primer 1.3.2 (Klasična definicija). Če je vzorčni prostor končen in so vsi
izidi enako verjetni, potem je verjetnost dogodka A enaka

P (A) = |A|
|Ω|

.

1.4 Računanje verjetnosti: kombinatorične metode

Pri obravnavi diskretnih vzorčnih prostorov, kjer imajo vsi izidi enako ver-
jetnost, lahko verjetnost dogodka A izračunamo kot

P (A) = |A|
|Ω|

.

Zato je pogosto najpomembnejša naloga prešteti število elementov v Ω in v
A. V ta namen uporabljamo osnovna kombinatorična pravila.

1.4.1 Načelo množenja

Če lahko neko opravilo izvedemo v n1 različnih načinih, drugo v n2 načinih,
in tako naprej do nk, potem lahko celoten postopek izvedemo na

n1 · n2 · . . . · nk

načinov.

Primer 1.4.1. Če lahko za geslo izberemo eno črko (25 možnosti) in eno
številko (10 možnosti), potem je vseh gesel 25 · 10 = 250.
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1.4.2 Permutacije in variacije

Permutacija je urejen razpored vseh n elementov. Število vseh permutacij
množice n elementov je

n! = n · (n − 1) · . . . · 2 · 1.

Primer 1.4.2. Koliko različnih načinov je, da razporedimo 5 knjig na
polico? Odgovor: 5! = 120.

Če izmed n elementov izberemo k in jih uredimo v vrstnem redu, govo-
rimo o variacijah brez ponavljanja:

n!
(n − k)! .

Primer 1.4.3. Izmed 10 kandidatov želimo izbrati predsednika, podpredsed-
nika in tajnika. Število možnosti je

10!
7! = 720.

1.4.3 Kombinacije

Če izmed n elementov izberemo k, pri čemer vrstni red ni pomemben, gov-
orimo o kombinacijah. Njihovo število je(

n

k

)
= n!

k!(n − k)! .

Primer 1.4.4. Izmed 10 kandidatov želimo izbrati 3 člane odbora, brez
razlikovanja po funkcijah. Število možnosti je(

10
3

)
= 120.

1.4.4 Binomski koeficienti in binomska formula

Binomski koeficient
(n

k

)
ima naravno interpretacijo: število podmnožic z k

elementi v n-članski množici.

Izrek 1.4.5 (Binomska formula). Za vsako naravno število n velja

(x + y)n =
n∑

k=0

(
n

k

)
xky n−k.
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Dokaz. Razvoj (x + y)n predstavlja produkt n faktorjev, v vsakem faktorju
lahko izberemo x ali y. Če izberemo natanko k-krat x in (n − k)-krat y,
dobimo člen xkyn−k. Število vseh takih izbir je

(n
k

)
. Seštevek vseh takih

členov da formulo.

Primer 1.4.6. Za n = 3 imamo

(x + y)3 = x3 + 3x2y + 3xy2 + y3,

kar ustreza
(3

0
)

= 1,
(3

1
)

= 3,
(3

2
)

= 3,
(3

3
)

= 1.

Primer 1.4.7 (Hipergeometrijska verjetnost). Naj bo N velikost populacije,
od tega je M elementov posebnega tipa (npr. »neustreznih«) in N − M
elementov drugega tipa (npr. »ustreznih«). Če naključno vzamemo vzorec
velikosti n brez vračanja, je verjetnost, da bo v vzorcu natanko k elementov
posebnega tipa, enaka

P (X = k) =
(M

k

)(N−M
n−k

)(N
n

) .

Konkretni primer hipergeometrojske verjetnosti: V pošiljki N = 100
artiklov je M = 10 neustreznih in 90 ustreznih. Če vzamemo vzorec n = 5
artiklov brez vračanja, je verjetnost, da bo natanko k = 2 neustrezna, enaka

P (X = 2) =
(10

2
)(90

3
)(100

5
) .

Tukaj števec predstavlja število načinov, kako izmed 10 neustreznih artiklov
izberemo 2, hkrati pa izmed 90 ustreznih še 3, imenovalec pa število vseh
možnih vzorcev velikosti 5 izmed 100 artiklov.

1.4.5 Multinomski koeficienti in formula(to bomo kasneje)

Število načinov, kako lahko n objektov razdelimo v m razredov, tako da jih
je v i-tem razredu natanko ki (i = 1, . . . , m in k1 + · · · + km = n), je dano z
multinomskim koeficientom:(

n

k1, k2, . . . , km

)
= n!

k1! k2! · · · km! .

Izrek 1.4.8 (Multinomska formula). Za vsako naravno število n velja

(x1 + x2 + · · · + xm)n =
∑

k1+···+km=n

(
n

k1, k2, . . . , km

)
xk1

1 xk2
2 · · · xkm

m .
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Primer 1.4.9. Za n = 3, m = 3 imamo

(x+y +z)3 = x3 +y3 +z3 +3x2y +3x2z +3y2x+3y2z +3z2x+3z2y +6xyz.

Primer 1.4.10 (Razdelitev v tri skupine). Naj bo n = 8 študentov, ki jih
želimo razdeliti v tri skupine: prvi skupini dodelimo k1 = 3 študente, drugi
k2 = 3, in tretji k3 = 2. Število vseh možnih razporeditev je(

8
3, 3, 2

)
= 8!

3! 3! 2! = 560.

Primer 1.4.11 (Deljenje kart igralcem). Naj imamo 12 kart in 4 igralce.
Vsak igralec dobi 3 karte. Število različnih razdelitev je(

12
3, 3, 3, 3

)
= 12!

3! 3! 3! 3! = 369600.

Primer 1.4.12 (Barvne kroglice v škatle). Naj imamo 15 kroglic: 6 rdečih,
5 modrih in 4 zelene. Število različnih načinov razvrstitve v tri razrede je(

15
6, 5, 4

)
= 15!

6! 5! 4! = 12612600.

1.5 Pogojna verjetnost
Včasih nas zanima verjetnost dogodka pod pogojem, da vemo, da se je zgodil
drug dogodek.
Definicija 1.5.1. Naj bosta A in B dogodka v vzorčnem prostoru Ω. Pogo-
jna verjetnost dogodka B glede na dogodek A je definirana kot

P (B|A) = P (A ∩ B)
P (A) , če je P (A) > 0.

Primeri iz vsakdanjega življenja

Primer 1.5.2 (Medicinski test). Če vemo, da je oseba bolna (A), nas zan-
ima verjetnost, da bo test pozitiven (B). Pogojna verjetnost je P (B|A) in
jo imenujemo občutljivost testa.
Primer 1.5.3 (Prometni zastoj). Verjetnost, da bomo zamudili na sestanek
(B), je večja, če vemo, da dežuje (A). Pogojna verjetnost P (B|A) odraža
vpliv vremena na zamude.
Primer 1.5.4 (Športna napoved). Verjetnost, da bo ekipa zmagala (B), se
spremeni, če vemo, da igra na domačem igrišču (A).
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Zakon množenja verjetnosti

Iz definicije sledi pomembna zveza:

P (A ∩ B) = P (A) P (B|A) = P (B) P (A|B).

Ta zakon omogoča računanje presekov verjetnosti preko pogojnih verjet-
nosti.

Primer 1.5.5. V vreči so tri rdeče in ena modra kroglica. Izberemo dve
kroglici brez vračanja. Kakšna je verjetnost, da sta obe rdeči? Naj bosta
R1 in R2 dogodka, da je na prvem oziroma drugem žrebu izžrebana rdeča
kroglica. Po pravilu množenja velja

P (R1 ∩ R2) = P (R1) P (R2 | R1).

Očitno je
P (R1) = 3

4 ,

in če je bila pri prvem žrebu odstranjena ena rdeča kroglica, ostaneta dve
rdeči in ena modra. Zato

P (R2 | R1) = 2
3 .

Sledi
P (R1 ∩ R2) = 3

4 · 2
3 = 1

2 .

Hitro kombinatorično preverjanje da enak rezultat:

P (oba rdeča) =
(3

2
)(4

2
) = 3

6 = 1
2 .

Opazimo, da dogodka R1 in R2 nista neodvisna; zato je pogojni korak
bistven.

Zakon popolne verjetnosti

Naj bo {A1, A2, . . . , Ak} popoln sistem disjunktnih dogodkov (tj. Ai∩Aj = ∅
za i ̸= j in A1 ∪ · · · ∪ Ak = Ω). Za vsak dogodek B velja

P (B) =
k∑

i=1
P (B|Ai)P (Ai).
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Primer 1.5.6. V navezavi na Primer 1.5.5: kakšna je verjetnost, da je na
drugem žrebu izžrebana rdeča kroglica? Pravilni rezultat dobimo z zakonom
totalne verjetnosti:

P (R2) = P (R2 | R1)P (R1) + P (R2 | B1)P (B1) = 2
3 · 3

4 + 1 · 1
4 = 3

4 ,

kjer B1 označuje dogodek, da je na prvem žrebu izžrebana modra kroglica.

Bayesovo pravilo

Bayesovo pravilo:

P (Ai|B) = P (B|Ai)P (Ai)∑k
j=1 P (B|Aj)P (Aj)

.

Primer 1.5.7. Poligrafski testi (t. i. detektorji laži) se pogosto rutinsko
izvajajo pri zaposlenih ali kandidatih za zaposlitev na občutljivih delovnih
mestih. Naj bo + dogodek, da je poligrafski rezultat pozitiven, kar pomeni,
da preiskovanec laže; naj bo R dogodek, da preiskovanec govori resnico; in
L dogodek, da preiskovanec laže.

Po raziskavah o zanesljivosti poligrafov (Gastwirth, 1987) velja:

P (+ | L) = 0.88,

od koder sledi, da je
P (− | L) = 0.12.

Prav tako velja
P (− | R) = 0.86,

od koder sledi
P (+ | R) = 0.14.

Z besedami: če oseba laže, je verjetnost, da bo to zaznal poligraf, enaka
0.88, medtem ko, če oseba govori resnico, poligraf z verjetnostjo 0.86 pokaže,
da govori resnico.

Predpostavimo sedaj, da se poligrafski testi rutinsko uporabljajo za varnos-
tno preverjanje zaposlenih, in da ima pri določenem vprašanju velika večina
preiskovancev nobenega razloga za laganje, tako da

P (R) = 0.99, P (L) = 0.01.
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Če preiskovanec pri testu dobi pozitiven rezultat, nas zanima, kakšna
je verjetnost, da je poligraf v resnici napačen in da oseba dejansko govori
resnico. To verjetnost lahko ocenimo z Bayesovim pravilom:

P (R | +) = P (+ | R)P (R)
P (+ | R)P (R) + P (+ | L)P (L) = (0.14)(0.99)

(0.14)(0.99) + (0.88)(0.01) = 0.94.

Torej bo pri preverjanju te populacije, v kateri je večina ljudi nedolžnih,
kar 94% pozitivnih rezultatov poligrafa napačnih. Večina tistih, ki bodo
zaradi poligrafskega rezultata osumljeni, bo v resnici nedolžnih. Ta primer
ponazarja eno izmed nevarnosti uporabe postopkov množičnega preverjanja
v velikih populacijah.

Sklep

Pogojna verjetnost, zakon popolne verjetnosti in Bayesovo pravilo so ključni
pojmi, ki omogočajo sklepanje v negotovih situacijah, od medicinske diag-
nostike do zanesljivosti naprav in strojnega učenja.

1.6 Neodvisnost
Pojem neodvisnosti opisuje situacije, ko pojav enega dogodka nima nobenega
vpliva na verjetnost drugega.

Definicija 1.6.1. Dogodka A in B sta neodvisna, če velja

P (A ∩ B) = P (A) · P (B).

Ekivalentno lahko rečemo, da sta A in B neodvisna, če

P (B|A) = P (B) ali P (A|B) = P (A).

Primer 1.6.2. Iz paketa kart naključno izberemo eno karto. Naj bo A
dogodek, da je karta as, in D dogodek, da je karta karo.

Če vemo, da je karta as, nam to ne pove ničesar o njenem znaku. For-
malno lahko preverimo, da sta dogodka neodvisna.

Velja
P (A) = 4

52 = 1
13 , P (D) = 1

4 .

Poleg tega je A ∩ D dogodek, da je izbrana karta karo as, zato

P (A ∩ D) = 1
52 .
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Ker pa je
P (A)P (D) =

( 1
13

)(1
4

)
= 1

52 ,

sta dogodka A in D dejansko neodvisna.

Neodvisnost več dogodkov

Dogodki A1, A2, . . . , An so medsebojno neodvisni, če za vsako podmnožico
{i1, i2, . . . , ik} indeksov velja

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1) · P (Ai2) · · · P (Aik

).

Primer 1.6.3 (Trije meti kovanca). Pri treh zaporednih metih kovanca
so dogodki »prvi met je grb«, »drugi met je grb« in »tretji met je grb«
medsebojno neodvisni, saj je verjetnost preseka enaka produktu posameznih
verjetnosti.

Opozorilo: Neodvisnost ̸= disjunktnost

- Če sta A in B disjunktna (A ∩ B = ∅), potem velja P (A ∩ B) = 0. - Če sta
hkrati neodvisna, bi morali imeti P (A ∩ B) = P (A)P (B) = 0. To je možno
samo, če je P (A) = 0 ali P (B) = 0.

Primer 1.6.4. Pri metu kocke naj bo A = {1} in B = {2}. Dogodka sta
disjunktna, nista pa neodvisna, ker

P (A ∩ B) = 0 ̸= P (A)P (B) = 1
36 .

Lastnosti neodvisnosti

Če sta A in B neodvisna, potem veljajo:

• A in Bc sta neodvisna,

• Ac in B sta neodvisna,

• Ac in Bc sta neodvisna.

Oris. Če je P (A ∩ B) = P (A)P (B), potem velja

P (A ∩ Bc) = P (A) − P (A ∩ B) = P (A)(1 − P (B)) = P (A)P (Bc).

Podobno se pokaže za ostale primere.
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Sklep

Neodvisnost je ključna lastnost v verjetnostni teoriji in statistiki. Omogoča
enostavnejše računanje verjetnosti in je osnova za mnoge modele, npr. pri
anketah (neodvisni odgovori), strojnem učenju in teoriji informacij.

1.7 Zaključne opombe
V tem poglavju smo spoznali osnovne pojme verjetnosti: vzorčne prostore,
dogodke, verjetnostne mere, kombinatorične metode, pogojno verjetnost in
neodvisnost. Ti koncepti tvorijo temelj za celotno teorijo verjetnosti in nji-
hovo poznavanje je ključno za razumevanje statistike.

Statistika gradi na verjetnosti: iz opazovanih podatkov sklepamo o pop-
ulacijah in procesih, ki so inherentno naključni. Brez osnovnega znanja
verjetnosti bi bilo nemogoče oblikovati zanesljive metode sklepanja, ocenje-
vanja in testiranja hipotez.

V naslednjih poglavjih bomo te ideje razširili na obravnavo slučajnih
spremenljivk in njihovih porazdelitev, kar bo omogočilo formalno obravnavo
podatkov v kvantitativnih znanstvenih disciplinah.

1.8 Naloge
1. Vržemo dve kocki. Določite verjetnost, da je vsota pik enaka 7.

2. Izmed 20 študentov jih 12 zna programirati v Pythonu. Naključno
izberemo 3. Kakšna je verjetnost, da vsi znajo programirati?

3. V podjetju je 40 % zaposlenih žensk. Če naključno izberemo 5 oseb,
kakšna je verjetnost, da bodo natanko 3 ženske?

4. V škatli je 6 rdečih in 4 modre kroglice. Izberemo 2. Določite verjet-
nost, da sta obe rdeči.

5. Dve karti izvlečemo zaporedoma brez vračanja iz kompleta 52 kart.
Določite verjetnost, da sta obe asi.

6. V podjetju testirajo nov izdelek. Pretekle izkušnje kažejo, da je 95
% izdelkov uspešnih, če so pri testiranju prejeli dobre ocene, 60 %
uspešnih, če so prejeli srednje ocene, in 10 % uspešnih, če so prejeli
slabe ocene. Če vemo, da je izdelek pri testiranju prejel dobre ocene,
kakšna je verjetnost, da bo uspešen na trgu?
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7. Dokazujte, da za poljubna dogodka A in B velja

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

8. V podjetju se 1 % izdelkov izkaže za neustrezne. Če pregledamo 100
izdelkov, ocenite verjetnost, da bo natanko en neustrezen.



Chapter 2

Slučajne spremenljivke

2.1 Diskretne slučajne spremenljivke
Slučajna spremenljivka je v bistvu naključno število. Za motivacijo si pogle-
jmo primer.

Kovanec vržemo trikrat in opazujemo zaporedje grbov (h) in cifer (t).
Vzorčni prostor je

Ω = {hhh, hht, htt, hth, ttt, tth, thh, tht}.

Primeri slučajnih spremenljivk, definiranih na Ω, so:

1. skupno število grbov,

2. skupno število cifer,

3. število grbov minus število cifer.

Vsaka od teh funkcij določa pravilo, ki vsakemu izidu ω ∈ Ω priredi
realno število. Ker je izid v Ω naključen, je tudi prirejeno število naključno.

Definicija 2.1.1. Na splošno je slučajna spremenljivka preslikava iz Ω v
realna števila:

X : Ω → R.

Običajno slučajne spremenljivke označujemo z velikimi črkami iz konca
abecede (npr. X, Y, Z).

Primer 2.1.2. Naj bo X skupno število grbov v opisanem poskusu (trikratni
met kovanca). Takrat je X slučajna spremenljivka, ki lahko zavzame vred-
nosti 0, 1, 2, 3.

17
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Definicija 2.1.3. Diskretna slučajna spremenljivka je slučajna spremenljivka,
ki lahko zavzame le končno ali kvečjemu števno neskončno mnogo vrednosti.

Primer 2.1.4. Prejšnja slučajna spremenljivka X (skupno število grbov v
treh metih) je diskretna, saj so možne vrednosti le 0, 1, 2, 3.

Za primer slučajne spremenljivke s števno neskončno mnogo možnimi
vrednostmi si poglejmo poskus: kovanec mečemo, dokler ne pade prvo grb,
in definiramo

Y = število metov do prve grbe.

Možne vrednosti so 1, 2, 3, . . . .
Na splošno pravimo, da je množica števno neskončna, če jo lahko postavimo

v bijektivno korespondenco z množico celih števil.

Primer 2.1.5. Če je kovanec pošten, ima vsak izid iz Ω zgoraj verjetnost
1
8 . Tako lahko izračunamo:

P (X = 0) = 1
8 , P (X = 1) = 3

8 , P (X = 2) = 3
8 , P (X = 3) = 1

8 .

Na splošno verjetnostna preslikava na vzorčnem prostoru določa ver-
jetnosti različnih vrednosti slučajne spremenljivke. Če so možne vrednosti
x1, x2, . . . , potem obstaja funkcija p, da velja

p(xi) = P (X = xi),
∑

i

p(xi) = 1.

Funkcija p se imenuje gostota (tudi frekvenčna funkcija) slučajne spre-
menljivke X.

Definicija 2.1.6. Porazdelitvena funkcija (cdf) slučajne spremenljivke X
je definirana kot

F (x) = P (X ≤ x), −∞ < x < ∞.

Porazdelitvena funkcija je naraščajoča in zadošča pogojema

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

Primer 2.1.7. Za slučajno spremenljivko X (število grbov v treh metih
poštenega kovanca) je p(x) podan z

p(0) = 1
8 , p(1) = 3

8 , p(2) = 3
8 , p(3) = 1

8 .

Porazdelitvena funkcija F (x) ima skoke v točkah x = 0, 1, 2, 3, višina skoka
pri x = i pa je enaka p(i).
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Neodvisne slučajne spremenljivke

Tako kot govorimo o neodvisnosti dogodkov, lahko definiramo tudi neodvis-
nost slučajnih spremenljivk.

Definicija 2.1.8. Slučajni spremenljivki X in Y sta neodvisni, če velja

P (X = xi, Y = yj) = P (X = xi) P (Y = yj) za vse i, j.

Primer 2.1.9 (Dva meta kovanca). Naj bo X = 1, če je pri prvem metu
grb (in 0 sicer), ter Y = 1, če je pri drugem metu grb (in 0 sicer). Potem je

P (X = 1, Y = 1) = 1
4 = 1

2 · 1
2 ,

in podobno za vse ostale kombinacije. Torej sta X in Y neodvisni.

Primer 2.1.10 (Met kovanca trikrat). Naj bo X = »število grbov v prvih
dveh metih«, Y = »število grbov v zadnjih dveh metih«, pri treh metih
poštenega kovanca.

Možne vrednosti so X ∈ {0, 1, 2} in Y ∈ {0, 1, 2}. Skupno vzorčni prostor
vsebuje 23 = 8 enako verjetnih izidov.

Izračunajmo nekaj verjetnosti:

P (X = 2) = 2
8 = 1

4 , P (Y = 2) = 2
8 = 1

4 .

Toda

P (X = 2, Y = 2) = P (prvi dve grb in zadnji dve grb) = P (hhh) = 1
8 .

Če bi bila X in Y neodvisni, bi moralo veljati

P (X = 2, Y = 2) = P (X = 2) P (Y = 2) = 1
4 · 1

4 = 1
16 .

Ker pa v resnici velja P (X = 2, Y = 2) = 1
8 ̸= 1

16 , spremenljivki X in Y
nista neodvisni.

2.1.1 Bernoullijeve slučajne spremenljivke

Definicija 2.1.11. Bernoullijev poskus je poskus, ki ima samo dva možna
izida: uspeh in neuspeh.

Primer 2.1.12. Met kovanca: uspeh = pade grb, neuspeh = pade cifra.
Test bolezni: uspeh = pozitiven test, neuspeh = negativen test.
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Definicija 2.1.13. Bernoullijeva slučajna spremenljivka X je definirana kot

X =
{

1, če nastopi uspeh,

0, če nastopi neuspeh.

Če je p = P (X = 1) verjetnost uspeha, potem velja

P (X = 0) = 1 − p, P (X = 1) = p.

Primer 2.1.14. Če je verjetnost, da bo test pravilno zaznal bolezen p =
0.98, potem je Bernoullijeva spremenljivka X = 1, če je test pozitiven, in
X = 0, če je negativen. Tedaj je P (X = 1) = 0.98, P (X = 0) = 0.02.

2.1.2 Binomske slučajne spremenljivke

Zaporedje n neodvisnih Bernoullijevih poskusov z verjetnostjo uspeha p
pripelje do števila uspehov X v teh n poskusih.

Definicija 2.1.15. Binomska slučajna spremenljivka X s parametri n in p
ima verjetnost

P (X = k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

Primer 2.1.16 (Spol otrok). Verjetnost, da se rodi fant, je približno p =
0.515. V družini s petimi otroki naj bo X število fantov. Potem

P (X = 3) =
(

5
3

)
0.5153 0.4852 ≈ 0.321,

P (X = 5) =
(

5
5

)
0.5155 ≈ 0.036.

Povezava z Bernoullijevimi spremenljivkami. Naključno spremenljivko
z binomsko porazdelitvijo lahko izrazimo kot vsoto n neodvisnih Bernoulli-
jevih spremenljivk. Če označimo Xi ∼ Bern(p), i = 1, . . . , n, neodvisne in
vsaka predstavlja izid enega poskusa, potem velja

X = X1 + X2 + · · · + Xn ∼ Bin(n, p).

Ta povezava je ključna, saj omogoča razumevanje binomske porazdelitve
kot seštevka preprostih poskusov tipa »uspeh/neuspeh«.
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2.1.3 Geometrijska porazdelitev

Definicija 2.1.17. Naj bo poskus sestavljen iz neodvisnih Bernoullijevih
poskusov, pri čemer ima vsak poskus le dva možna izida in verjetnost uspeha
p je enaka v vseh poskusih. Naključno spremenljivko X, ki je enaka številu
poskusov do prvega uspešnega poskusa, imenujemo geometrijska naključna
spremenljivka.

Definicija 2.1.18. Gostota geometrijske spremenljivke je

P (X = x) = (1 − p)x−1p, x = 1, 2, . . .

Primer 2.1.19. Pri digitalnem prenosu signala je verjetnost, da je signal
slab, p = 0.1. Naj bo X število prenosov do prvega slabega signala.

P (X = 1) = 0.1, P (X = 10) = 0.999·0.1 ≈ 0.0387, P (X = 20) = 0.9919·0.1 ≈ 0.0135.

Pričakovana vrednost diskretne slučajne spremenljivke

Definicija 2.1.20. Če je X diskretna slučajna spremenljivka z gostoto p(x),
je njena pričakovana vrednost, označena z E(X), definirana kot

E(X) =
∑

i

xi p(xi),

pod pogojem, da velja ∑
i

|xi| p(xi) < ∞.

Vsote bomo podrobneje študirali v prihodnjem poglavju. Prav tako bomo
spoznali še nakaj drugih zelo pomembnih diskretnih slučajnih spremenljivk,
kot so negativna binomska, hipergeometrijska in Poissonova.

2.2 Zvezne slučajne spremenljivke
Pri zveznih slučajnih spremenljivkah vlogo frekvenčne funkcije prevzame
gostota verjetnosti (ali na kratko gostota) f(x), za katero velja:

f(x) ≥ 0,

∫ ∞

−∞
f(x) dx = 1.

Če je X zvezna slučajna spremenljivka z gostoto f , potem za poljubna
a < b:

P (a < X < b) =
∫ b

a
f(x) dx.
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Porazdelitvena funkcija. Za zvezno slučajno spremenljivko X defini-
ramo porazdelitveno funkcijo

F (x) = P (X ≤ x) =
∫ x

−∞
f(u) du.

Če je f zvezna v x, potem velja f(x) = F ′(x), kar bomo še dokazali.

Enakomerna slučajna spremenljivka. Enakomerna slučajna spremenljivka
na intervalu [0, 1] ima gostoto

f(x) =
{

1, 0 ≤ x ≤ 1,

0, sicer,

in porazdelitveno funkcijo

F (x) =


0, x ≤ 0,

x, 0 ≤ x ≤ 1,

1, x ≥ 1.

Normalna porazdelitvena funckija Slučajna spremenljivka X ima nor-
malno porazdelitev s parametri µ in σ2, če je njena gostota verjetnosti

f(x) = 1
σ

√
2π

exp
(

−(x − µ)2

2σ2

)
, −∞ < x < ∞,

kjer je µ ∈ R sredina (ali povprečje ali pričakovana vrednost) in σ2 > 0
varianca (disperzija).

V prihodnjih poglavjih bomo spoznali še nekatere druge zvezne slu:cajne
spremenljivke.

Kvantil, mediana in kvartili.

Definicija 2.2.1. Naj bo X zvezna slučajna spremenljivka s porazdelitveno
funkcijo F . Za 0 < p < 1 imenujemo p-ti kvantil število xp, za katero velja

P (X ≤ xp) = F (xp) = p.

Če je F strogo naraščajoča, je kvantil enolično določen kot

xp = F −1(p).
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Posebni primeri kvantilov:

x0.5 je mediana, x0.25 je spodnji kvartil, x0.75 je zgornji kvartil.

Primer 2.2.2. Naj bo porazdelitvena funkcija

F (x) = x2, 0 ≤ x ≤ 1.

Inverzna funkcija je F −1(y) = √
y. Sledi:

mediana = x0.5 = F −1(0.5) =
√

0.5 ≈ 0.707,

spodnji kvartil = x0.25 = F −1(0.25) =
√

0.25 = 0.50,

zgornji kvartil = x0.75 = F −1(0.75) =
√

0.75 ≈ 0.866.

Pričakovana vrednost zvezne slučajne spremenljivke

Definicija 2.2.3. Če je X zvezna slučajna spremenljivka z gostoto f(x),
potem je njena pričakovana vrednost

E(X) =
∫ ∞

−∞
xf(x) dx,

pod pogojem, da velja ∫ ∞

−∞
|x|f(x) dx < ∞.

Integrale bomo podrobneje študirali v prihodnjih poglavjih.

Varianca slučajne spremenljivke

Definicija 2.2.4. Če je X slučajna spremenljivka s pričakovano vrednostjo
E(X), potem je varianca spremenljivke X definirana kot

Var(X) = E
[
(X − E(X))2

]
,

pod pogojem, da pričakovana vrednost obstaja. Standardni odklon spre-
menljivke X je kvadratni koren variance.
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Chapter 3

Zaporedja in vrste

Zaporedja
Definicija 3.0.1. Zaporedje realnih števil je predpis, ki vsakemu naravnemu
številu n ∈ N priredi realno število an. Realno število an imenujemo n-ti
člen zaporedja, n pa indeks člena an. Zaporedje zapišemo kot a1, a2, a3, . . .
ali krajše {an}n∈N oziroma {an}.

Opomba 3.0.2. Zaporedje lahko določimo eksplicitno (s predpisom za splošni
člen an) ali rekurzivno (s predpisom, ki izrazi an z nekaj predhodnimi členi
an−1, an−2, . . . ). Člene zaporedja je pogosto nazorno predstaviti kot točke
(n, an) v ravnini ali kot točke an na številski premici.

Primer 3.0.3.

• Aritmetično zaporedje: an+1 = an + d in an = a1 + (n − 1)d.

• Geometrijsko zaporedje: an+1 = q an in an = a1q n−1.

• Fibonacci: a1 = 1, a2 = 1, an = an−1 + an−2.

Monotonost in omejenost

Definicija 3.0.4. Zaporedje {an} je naraščajoče, če an+1 ≥ an za vsak n ∈
N, in strogo naraščajoče, če an+1 > an. Podobno je padajoče, če an+1 ≤ an,
in strogo padajoče, če an+1 < an. Zaporedje je monotono, če je naraščajoče
ali padajoče.

Definicija 3.0.5. Zaporedje {an} je navzgor omejeno, če obstaja M ∈ R
tako, da an ≤ M za vse n; število M je (ena) zgornja meja. Navzdol omejeno

25
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je, če obstaja m ∈ R tako, da an ≥ m za vse n; m je (ena) spodnja meja.
Zaporedje je omejeno, če je hkrati navzgor in navzdol omejeno.

Definicija 3.0.6. Natančna zgornja meja (supremum) zaporedja je sup
n∈N

an,
najmanjša med vsemi njegovimi zgornjimi mejami. Natančna spodnja meja
(infimum) je inf

n∈N
an, največja med vsemi spodnjimi mejami.

Primer 3.0.7. Za an = n + 1
n

= 1 + 1
n

je infn an = 1, zaporedje je strogo
padajoče in supn an = a1 = 2.

Alternirajoča zaporedja

Definicija 3.0.8. Zaporedje je alternirajoče, če se predznak členov izmen-
juje, tj. anan+1 < 0 za vsak n.

Stekališča in limita

Definicija 3.0.9 (Stekališče). Število A ∈ R je stekališče zaporedja {an},
če za vsak ε > 0 leži v (A − ε, A + ε) neskončno mnogo členov zaporedja.

Definicija 3.0.10 (Limita). Število A je limita zaporedja {an}, če za vsak
ε > 0 obstaja n0 ∈ N tako, da za vse n > n0 velja |an − A| < ε. V tem
primeru pišemo limn→∞ an = A in pravimo, da je zaporedje konvergentno.
Če takega A ni, je zaporedje divergentno.

Trditev 3.0.11. Če limn→∞ an = A, potem je A stekališče zaporedja in
zunaj vsake okolice (A − ε, A + ε) leži le končno mnogo členov.

Izrek 3.0.12. Zaporedje je konvergentno natanko tedaj, ko je omejeno in
ima natanko eno stekališče.

Izrek 3.0.13 (Monotono konvergenčni izrek). Če je {an} naraščajoče in
omejeno, potem konvergira in velja lim

n→∞
an = sup

n
an. Če je {an} padajoče

in omejeno, potem konvergira in velja lim
n→∞

an = inf
n

an.

Primer 3.0.14. Zaporedje

an = 2n + 1, n ∈ N,

ima člene 3, 5, 7, 9, . . . . To je strogo naraščajoče zaporedje, ki ni navzgor
omejeno. Njegova natančna spodnja meja je

inf
n∈N

an = 3.
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Primer 3.0.15. Zaporedje

an = 1
n

, n ∈ N,

je strogo padajoče in navzdol omejeno z 0. Velja

lim
n→∞

an = 0 = inf
n∈N

an,

torej je limita enaka natančni spodnji meji.

Primer 3.0.16. Zaporedje

an = (−1)n, n ∈ N,

je alternirajoče. Ni monotono in nima limite, ker se členi zaporedja gibljejo
med 1 in −1. Ima pa dve stekališči: −1 in 1.

Računanje z limitami

Trditev 3.0.17. Če sta {an} in {bn} konvergentni, potem veljajo stan-
dardna pravila:

lim
n→∞

(an±bn) = lim an±lim bn, lim
n→∞

(c an) = c lim an, lim
n→∞

(anbn) = (lim an)(lim bn).

Če je bn ̸= 0 za vse n in lim bn ̸= 0, potem lim
n→∞

an

bn
= lim an

lim bn
.

Primer 3.0.18.

lim
n→∞

(2n − 1)2 + 1
(2n + 1)(n + 1) = lim

n→∞
4n2 − 4n + 2
2n2 + 3n + 1 = 4

2 = 2.

Nekaj standardnih limit

Trditev 3.0.19. Za c ∈ R velja

lim
n→∞

c n =
{

0, |c| < 1,

1, c = 1,
.

Trditev 3.0.20. Za c > 0 velja lim
n→∞

c1/n = 1.
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Število e

Definicija 3.0.21. Definiramo zaporedji an =
(
1 + 1

n

)n
in bn =

(
1 − 1

n

)−n
.

Velja, da je an naraščajoče in navzgor omejeno, bn padajoče in navzdol
omejeno, zato sta konvergentni in imata isto limito:

e = lim
n→∞

(
1 + 1

n

)n
= lim

n→∞

(
1 − 1

n

)−n
≈ 2,7182.

Število e je iracionalno.

Številske vrste

Definicija 3.0.22. Dano imamo neko zaporedje realnih števil

a1, a2, a3, . . .

Kaj bi bila vsota neskončno členov tega zaporedja?

Primer 3.0.23. Naj bo zaporedje dano s predpisom an = n. Koliko je

1 + 2 + 3 + 4 + 5 + . . . ?

Primer 3.0.24. Naj bo zaporedje dano s predpisom an = (−1)n. Koliko je

−1 + 1 + (−1) + 1 + (−1) + 1 + (−1) + . . . ?

Primer 3.0.25.
1 + 1

2 + 1
4 + 1

8 + · · · = 2

Definicija 3.0.26. Naj bo {an} zaporedje realnih števil. Izraz

a1 + a2 + a3 + · · · =
∞∑

n=1
an

imenujemo številska vrsta, število an pa splošni člen vrste.

Definicija 3.0.27. S pomočjo členov zaporedja {an} definiramo novo za-
poredje delnih vsot {sn} s členi

s1 = a1, s2 = a1 + a2, . . . , sn =
n∑

i=1
ai, . . .
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Definicija 3.0.28. Vrsta ∑∞
n=1 an je konvergentna, če konvergira zaporedje

njenih delnih vsot {sn}. Limito zaporedja delnih vsot imenujemo vsota vrste.
Če vrsta ni konvergentna, pravimo, da je divergentna.

Primer 3.0.29. Preverimo konvergenco vrste
∞∑

n=1
(−1)n.

Ker je sn = 0 za sode n in sn = −1 za lihe n, ima zaporedje delnih vsot dve
stekališči, torej ni konvergentno in je vrsta ∑∞

n=1(−1)n divergentna.

Primer 3.0.30. Izračunajmo vsoto vrste
∞∑

n=1

1
n(n + 1) .

Ker velja
1

n(n + 1) = 1
n

− 1
n + 1 ,

so delne vsote enake
sn = 1 − 1

n + 1 .

Torej
lim

n→∞
sn = 1,

in vrsta je konvergentna z vsoto 1.

Definicija 3.0.31. Vrsto
∞∑

n=0
aqn = a + aq + aq2 + aq3 + . . .

imenujemo geometrijska vrsta.

Trditev 3.0.32. Če je q ̸= 1, potem je

sn =
n∑

i=0
aqi = a · 1 − qn+1

1 − q
.

Za |q| < 1 je
∞∑

i=0
aqi = a

1 − q
.

Za |q| ≥ 1 je geometrijska vrsta divergentna.
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Dokaz. Naj bo q ̸= 1 in

sn =
n∑

i=0
aqi = a(1 + q + q2 + · · · + qn).

Pomnožimo z (1 − q):

(1 − q)sn = a
[
(1 + q + · · · + qn) − (q + q2 + · · · + qn+1)

]
= a(1 − qn+1).

Ker je q ̸= 1, lahko delimo z (1 − q) in dobimo

sn = a · 1 − qn+1

1 − q
.

Če je |q| < 1, potem limn→∞ qn+1 = 0, zato sledi

∞∑
i=0

aqi = lim
n→∞

sn = a · 1 − 0
1 − q

= a

1 − q
.

Primer 3.0.33. Izračunajmo neskončno geometrijsko vrsto
∞∑

n=0
3
(1

4

)n

.

Tukaj je začetni člen a = 3 in količnik q = 1
4 , pri čemer je |q| < 1, zato vrsta

konvergira.
Po formuli za neskončno geometrijsko vrsto dobimo

∞∑
n=0

aqn = a

1 − q
.

Vstavimo a = 3 in q = 1
4 :

∞∑
n=0

3
(1

4

)n

= 3
1 − 1

4
= 3

3
4

= 4.

Zato je
∞∑

n=0
3
(1

4

)n

= 4.
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Izrek 3.0.34. Potreben, ne pa tudi zadosten, pogoj za konvergenco vrste∑∞
n=1 an je

lim
n→∞

an = 0.

Definicija 3.0.35. Vrsta

∞∑
n=1

1
n

= 1 + 1
2 + 1

3 + 1
4 + . . .

se imenuje harmonična vrsta.

Trditev 3.0.36. Harmonična vrsta je divergentna.

Opomba 3.0.37. Pri harmonični vrsti je limn→∞
1
n = 0, vendar vrsta ni

konvergentna. Pogoj lim an = 0 torej ni zadosten za konvergenco vrste.

Izrek 3.0.38 (Primerjalni kriterij). Naj za vrsti
∑

an in
∑

bn velja 0 <
an ≤ bn za vsak n ∈ N.

• Če je
∑

bn konvergentna, potem je tudi
∑

an konvergentna.

• Če je
∑

an divergentna, potem je tudi
∑

bn divergentna.

Izrek 3.0.39 (Kvocientni kriterij). Naj bo
∑

an vrsta s pozitivnimi člen, in
naj obstaja

lim
n→∞

an+1
an

= q.

• Če je q < 1, potem je vrsta konvergentna.

• Če je q > 1, potem je vrsta divergentna.

• Če je q = 1, kriterij odpove.

Izrek 3.0.40 (Korenski kriterij). Naj bo
∑

an vrsta s pozitivnimi členi in
naj obstaja

lim
n→∞

n
√

an = q.

• Če je q < 1, potem je vrsta konvergentna.

• Če je q > 1, potem je vrsta divergentna.

• Če je q = 1, kriterij odpove.
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Primer 3.0.41. 1.
∞∑

n=1

1
n!

Splošni člen je
an = 1

n! .

Izračunamo kvocient zaporednih členov:

q = lim
n→∞

an+1
an

= lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

n!
(n + 1)! = lim

n→∞
1

n + 1 = 0 < 1.

Ker je q < 1, je vrsta **konvergentna**.

2.
∞∑

n=1

n!
en

Splošni člen je
an = n!

en
.

Izračunamo kvocient:

q = lim
n→∞

an+1
an

= lim
n→∞

(n+1)!
en+1

n!
en

= lim
n→∞

n + 1
e

= ∞ > 1.

Ker je q > 1, je vrsta **divergentna**.

3.
∞∑

n=1

n − 1
(n + 1)n(n+1)

Splošni člen je

an =
(

n − 1
n + 1

)n(n+1)
.

Uporabimo korenski kriterij:

q = lim
n→∞

n
√

an = lim
n→∞

n

√
n − 1

(n + 1)n(n+1) = lim
n→∞

(n − 1
n + 1)n+1 = e−2 < 1.

Ker je q < 1, je vrsta **konvergentna**.
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Definicija 3.0.42. Vrsta ∑
an je absolutno konvergentna, če je konver-

gentna vrsta∑ |an|. Vrsta∑ an je pogojno konvergentna, če je konvergentna,
ni pa absolutno konvergentna.
Izrek 3.0.43. Vsaka absolutno konvergentna vrsta je konvergentna.
Definicija 3.0.44. Vrsta ∑ an je alternirajoča, če velja anan+1 < 0 za vsak
n ∈ N.
Izrek 3.0.45 (Leibnitzov kriterij). Če je pri alternirajoči vrsti

∑
an za-

poredje absolutnih vrednosti {|an|} padajoče proti 0, potem je vrsta konver-
gentna.
Primer 3.0.46. Preverimo konvergentnost vrste

∞∑
n=1

(−1)n+1

n
.

Ker velja 1
n → 0 in 1

n monotono pada, je vrsta konvergentna.

Diskretne porazdelitve: normalizacija in matem-
atično upanje
V tem poglavju normalizacija pomeni preverjanje, da se verjetnostna funkcija
(gostota) dejansko sešteje v 1. To je osnovni pogoj, saj mora vsota vseh
verjetnosti (pri diskretni spremenljivki) oziroma integral gostote (pri zvezni
spremenljivki) enaka 1, ker se mora dogodek z gotovostjo zgoditi v vzorčnem
prostoru.

Bernoullijeva porazdelitev Bern(p)
Gostota:

f(x) =
{

p, x = 1,

1 − p, x = 0,
0 < p < 1.

Normalizacija: ∑
x∈{0,1}

f(x) = (1 − p) + p = 1.

Pričakovana vrednost:

E(X) =
∑

x∈{0,1}
xf(x) = 0 · (1 − p) + 1 · p = p.

Opomba: Bernoullijeva porazdelitev je poseben primer binomske po-
razdelitve s parametroma n = 1 in p.
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Diskretna enakomerna porazdelitev

Definicija 3.0.47. Naj bo A = {x1, x2, . . . , xn} končna množica različnih
realnih števil. Slučajna spremenljivka X, ki zavzame vrednost vsakega xi z
enako verjetnostjo 1

n , se imenuje diskretno enakomerno porazdeljena. Njena
porazdelitvena funkcija je

P (X = xi) = 1
n

, i = 1, 2, . . . , n.

Opomba 3.0.48. Normalizacija je očitna, saj velja
n∑

i=1
P (X = xi) =

n∑
i=1

1
n

= 1.

Primer 3.0.49. Met pravične kocke: X predstavlja število pik na vrženi
kocki. Potem

P (X = k) = 1
6 , k = 1, 2, 3, 4, 5, 6.

Trditev 3.0.50 (Matematično upanje). Za enakomerno porazdeljeno sluča-
jno spremenljivko X na {x1, . . . , xn} je

E(X) =
n∑

i=1
xi · 1

n
= 1

n

n∑
i=1

xi.

Če so vrednosti 1, 2, . . . , n, potem velja

E(X) = 1
n

(1 + 2 + · · · + n) = n + 1
2 ,

kar dokažemo z indukcijo.

Primer 3.0.51. Za met kocke je pričakovano število pik

E(X) = 1 + 2 + 3 + 4 + 5 + 6
6 = 3.5.

Binomska porazdelitev Bin(n, p)
Gostota:

f(k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

Normalizacija (binomski izrek):
n∑

k=0

(
n

k

)
pk(1 − p)n−k = (p + (1 − p))n = 1.
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Pričakovano vrednost:

E(X) =
n∑

k=0
k

(
n

k

)
pk(1 − p)n−k.

Opazimo identiteto k
(n

k

)
= n

(n−1
k−1
)
. Vstavimo:

E(X) = np
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p)(n−1)−(k−1).

Zamenjajmo indeks j = k − 1:

E(X) = np
n−1∑
j=0

(
n − 1

j

)
pj(1 − p)(n−1)−j .

Ta vsota je (p + (1 − p))n−1 = 1, torej

E(X) = np.

Geometrijska porazdelitev Geom(p)
Gostota:

f(k) = (1 − p)k−1p, k = 1, 2, . . .

Normalizacija (geometrijska vrsta):
∞∑

k=1
(1 − p)k−1p = p

∞∑
m=0

(1 − p)m = p

1 − (1 − p) = 1.

Pričakovano vrednost:

E(X) =
∞∑

k=1
k(1 − p)k−1p.

Opazimo, da je ∑∞
k=1 k(1 − p)k−1 odvod po spremenljivki p od geometrijske

vrste ∑∞
k=0 −(1 − p)k = − 1

1−(1−p) = −1
p . Ta odvod pa je enak

1
p2

in tako dobimo
E(X) = p · 1

p2 = 1
p

.
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Chapter 4

Funkcije, odvodi in integrali

Grafi in osnovne lastnosti

Definicija 4.0.1. Graf funkcije f : D → R, D ⊆ R, je množica

Γ(f) = {(x, f(x)) : x ∈ D} ⊆ R2.

Trditev 4.0.2. Funkcija f : D → R je injektivna natanko tedaj, ko vsaka
premica vzporedna z abscisno osjo seka njen graf največ enkrat.

Trditev 4.0.3. Funkcija f : D → R je surjektivna natanko tedaj, ko vsaka
premica vzporedna z abscisno osjo seka njen graf vsaj enkrat.

Definicija 4.0.4. Funkcija f : D → R je

• soda, če f(−x) = f(x) za vsak x ∈ D, njen graf pa je simetričen glede
na ordinatno os;

• liha, če f(−x) = −f(x) za vsak x ∈ D, njen graf pa je simetričen glede
na izhodišče.

Opomba 4.0.5. Večina funkcij ni ne lihih ne sodih.

Primer 4.0.6. Funkcija f(x) = x2 je soda, saj velja f(−x) = (−x)2 = x2 =
f(x). Njen graf (parabola) je simetričen glede na ordinatno os.

Primer 4.0.7. Funkcija f(x) = x3 je liha, saj f(−x) = (−x)3 = −x3 =
−f(x). Njen graf je simetričen glede na koordinatno izhodišče.

Primer 4.0.8. Funkcija f(x) = x2 + x ni niti soda niti liha. Za f(−x) =
(−x)2 + (−x) = x2 − x, kar ni enako ne f(x) ne −f(x).

Primer 4.0.9. Funkcija f(x) = cos(x) je soda, ker cos(−x) = cos(x).
Funkcija f(x) = sin(x) pa je liha, saj sin(−x) = − sin(x).

37
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Monotone in omejene funkcije

Definicija 4.0.10. Funkcija f : D → R, D ⊆ R, je

• naraščajoča, če f(x1) ≤ f(x2) za vse x1 < x2 iz D,

• strogo naraščajoča, če f(x1) < f(x2) za vse x1 < x2,

• padajoča, če f(x1) ≥ f(x2) za vse x1 < x2,

• strogo padajoča, če f(x1) > f(x2) za vse x1 < x2.

Funkcija je monotona, če je naraščajoča ali padajoča.

Definicija 4.0.11. Funkcija f : D → R je navzgor omejena, če obstaja
M ∈ R, da je f(x) ≤ M za vsak x ∈ D. Število M imenujemo zgornja meja.

Podobno je navzdol omejena, če obstaja m ∈ R, da je f(x) ≥ m za vsak
x ∈ D.

Funkcija je omejena, če je hkrati navzgor in navzdol omejena.

Primer 4.0.12. Funkcija f(x) = arctan(x) je strogo naraščajoča, navzgor
omejena z π

2 in navzdol omejena z −π
2 .

—

Inverzne funkcije

Definicija 4.0.13. Naj bo f : D → R, D ⊆ R, injektivna funkcija. Potem
obstaja inverzna funkcija f−1 : f(D) → D, ki zadošča pogoju

f−1(f(x)) = x, x ∈ D.

Primer 4.0.14. Če je f(x) = 2x + 3, potem dobimo y = 2x + 3, od tod
x = y−3

2 . Zato je inverzna funkcija f−1(y) = y−3
2 .

Opomba 4.0.15. Graf inverzne funkcije f−1 dobimo tako, da graf funkcije
f prezrcalimo čez simetralo lihih kvadrantov y = x.

—
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Polinomi in racionalne funkcije

Definicija 4.0.16. Polinom stopnje n je funkcija oblike

p(x) = anxn + an−1xn−1 + · · · + a1x + a0, an ̸= 0.

Definicijsko območje polinoma je celotna množica R.
Izrek 4.0.17 (Osnovni izrek algebre). Polinom stopnje n ima natanko n
kompleksnih ničel, pri čemer so nekatere lahko večkratne.

Primer 4.0.18. Polinom p(x) = −x3 + 3x + 2 ima ničle x = −2, x = 1 in
x = ?. Ker je polinom tretje stopnje, ima natanko tri realne ničle.
Definicija 4.0.19. Racionalna funkcija je funkcija oblike

f(x) = p(x)
q(x) ,

kjer sta p in q polinoma in q(x) ̸= 0. Definicijsko območje racionalne funkcije
je R \ {x : q(x) = 0}.
Primer 4.0.20. Funkcija

f(x) = x2(x + 1)
x2 − 4

ima ničle pri x = 0 in x = −1, pole pa pri x = ±2.
—

Eksponentne in logaritemske funkcije

Definicija 4.0.21. Za a > 0, a ̸= 1, je eksponentna funkcija

f(x) = ax.

Najpogosteje uporabljamo osnovo e, tj. f(x) = ex.
Opomba 4.0.22. Eksponentna funkcija je strogo monotona: za a > 1
narašča, za 0 < a < 1 pada. Zaloga vrednosti je vedno (0, ∞).
Definicija 4.0.23. Logaritemska funkcija je inverzna eksponentni funkciji
x 7→ ax in jo označimo

f(x) = loga(x), x > 0.

Za osnovo a = e dobimo naravni logaritem f(x) = log x.
Primer 4.0.24. Velja loga(1) = 0, loga(a) = 1. Na primer, log2(8) = 3.

—
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Trigonometrične funkcije funkcije

Definicija 4.0.25. Osnovne trigonometrične funkcije so sinus, kosinus, tan-
gens in kotangens. Njihovo definicijsko območje razširimo na vsa realna
števila, razen tam, kjer so imenovalci enaki 0.

Primer 4.0.26. Velja identiteta sin2 x + cos2 x = 1, pa tudi tan2 x + 1 =
1

cos2 x
.

Definicija 4.0.27. Inverzne trigonometrične funkcije imenujemo ciklometrične
funkcije:

arcsin, arccos, arctan .

Definirane so na ustreznih intervalih, kjer so sinus, kosinus in tangens injek-
tivni.

glejte prosojnice —

Zveznost funkcij

Definicija 4.0.28 (Zveznost v točki). Naj bo f : D → R, D ⊆ R. Funkcija
f je zvezna v točki x0 ∈ D, če

lim
x→x0

f(x) = f(x0)
(
tj. lim

x↑x0
f(x) = f(x0) = lim

x↓x0
f(x)

)
.

Pravimo, da je f zvezna na D, če je zvezna v vsaki točki iz D.

Trditev 4.0.29 (Zamenjava limita in zvezne funkcije). Če je g zvezna v
točki lim

x→x0
f(x), potem

lim
x→x0

g
(
f(x)

)
= g

(
lim

x→x0
f(x)

)
.

Računska pravila za zvezne funkcije. Če sta f in g zvezni (na istem
območju definicije), potem so zvezne tudi:

f + g, f · g,
f

g
(kjer g ̸= 0), g ◦ f.

Trditev 4.0.30 (Predznak v krajiščih ⇒ ničla (poseben primer IVI)). Naj
bo f : [a, b] → R zvezna in naj bo f(a) f(b) < 0. Tedaj obstaja x0 ∈ [a, b]
tako, da je f(x0) = 0.
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Trditev 4.0.31 (Omejenost na zaprtem intervalu). Zvezna funkcija f :
[a, b] → R je omejena.

Opomba 4.0.32. Če interval ni zaprt, to ni nujno res. Na primer f :
(0, 1) → R, f(x) = 1

x − 1, je na (0, 1) zvezna in neomejena.

Trditev 4.0.33 (Izrek o največji in najmanjši vrednosti). Naj bo f : [a, b] →
R zvezna. Potem f na [a, b] doseže svojo natančno spodnjo in zgornjo mejo:

∃ xm, xM ∈ [a, b] : f(xm) = inf
x∈[a,b]

f(x), f(xM ) = sup
x∈[a,b]

f(x).

Trditev 4.0.34 (Izrek o vmesnih vrednostih). Naj bo f : [a, b] → R zvezna
in naj bosta

m = inf
x∈[a,b]

f(x), M = sup
x∈[a,b]

f(x).

Potem f na [a, b] zavzame vsako vrednost iz intervala [m, M ]: za vsak t ∈
[m, M ] obstaja xt ∈ [a, b] s f(xt) = t.

Odvod

Definicija in motivacija

Pri proučevanju funkcij nas zanima, kako se funkcija spreminja: ali njene
vrednosti naraščajo, padajo, in kako hitre so te spremembe. Hitrost sprem-
injanja funkcije f(x) v odvisnosti od spremenljivke x opredelimo s pomočjo
odvoda.

Naj bo f : (a, b) → R in x0 ∈ (a, b). Ko se vrednost spremenljivke poveča
iz x0 na x0 + h, se vrednost funkcije spremeni za

f(x0 + h) − f(x0).

Kvocient
f(x0 + h) − f(x0)

h

imenujemo diferencialni kvocient. To je smerni koeficient premice skozi točki
(x0, f(x0)) in (x0 + h, f(x0 + h)).

Definicija 4.0.35. Če obstaja limita

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

,

pravimo, da je f odvedljiva v x0, število f ′(x0) pa je njen odvod.
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Primer 4.0.36. Izračunajmo po definiciji odvod f(x) = x2 + x:

f ′(x) = lim
h→0

(x + h)2 + (x + h) − (x2 + x)
h

= lim
h→0

(2x + h + 1) = 2x + 1.

Primer 4.0.37. Za f(x) = xx (x > 0) zapišemo f(x) = ex log x. Potem po
verižnem pravilu

f ′(x) = xx(log x + 1).

—

Tangenta

Definicija 4.0.38. Premico skozi (x0, f(x0)) s smernim koeficientom f ′(x0)
imenujemo tangenta na graf funkcije f v tej točki.

Primer 4.0.39. Za f(x) = x2 in x0 = 1 je f ′(1) = 2. Tangenta v točki
(1, 1) je y = 2(x − 1) + 1 = 2x − 1.

—

Pravila za odvajanje

• (c)′ = 0, (cf)′ = cf ′.

• (f + g)′ = f ′ + g′.

• (fg)′ = f ′g + fg′.

•
(

f
g

)′
= f ′g − fg′

g2 , če g ̸= 0.

• (f ◦ g)′ = (f ′ ◦ g) · g′.

Primer 4.0.40. Odvajajmo f(x) = sin(x2). Notranja funkcija je g(x) = x2,
zunanja h(u) = sin u.

f ′(x) = h′(g(x))g′(x) = cos(x2) · 2x = 2x cos(x2).

Primer 4.0.41. Naj bo f(x) = x2+1
x−1 . Potem

f ′(x) = 2x(x − 1) − (x2 + 1)
(x − 1)2 = x2 − 2x − 1

(x − 1)2 .

—
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Tabela odvodov

(xr)′ = rxr−1, (ex)′ = ex, (ax)′ = ax log a,

(log x)′ = 1
x , (sin x)′ = cos x, (cos x)′ = − sin x

(tan x)′ = 1
cos2 x

,

(arcsin x)′ = 1√
1 − x2

,

(arccos x)′ = − 1√
1 − x2

,

(arctan x)′ = 1
1 + x2 .

Primer 4.0.42. Izračunajmo

d

dx

(
log(sin x)

)
= 1

sin x
· cos x = cot x,

kjer je x ∈ (0, π).

f(x + h) − f(x)
h

≈ f ′(x) oziroma f(x + h) ≈ f(x) + f ′(x) h.

Višji odvodi nekaterih elementarnih funkcij.

• Če je f(x) = ex, potem za vsak n ∈ N velja

f (n)(x) = ex.

• Če je f(x) = xn (za celo n ≥ 0), potem za 0 ≤ k ≤ n velja

f (k)(x) = n(n − 1) · · · (n − k + 1) x n−k,

posebej
f (n)(x) = n!, f (m)(x) = 0 za m > n.

• Če je f(x) = sin x, potem

f ′(x) = cos x, f ′′(x) = − sin x, f (3)(x) = − cos x, f (4)(x) = sin x.
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Lastnosti odvedljivih funkcij.

Izrek. Če je funkcija f : (a, b) → R odvedljiva v točki x0 ∈ (a, b),
potem je f v točki x0 tudi zvezna.

Izrek. Naj bo f : [a, b] → R odvedljiva in naj bo x0 ∈ (a, b).
Če je f ′(x0) > 0, je f v točki x0 naraščajoča (lokalno). Če je
f ′(x0) < 0, je f v točki x0 padajoča (lokalno).

—

Definicija 4.0.43 (Stacionarna točka). Če za odvedljivo funkcijo f : [a, b] →
R velja f ′(x0) = 0 za x0 ∈ (a, b), pravimo, da je x0 stacionarna točka funkcije
f . Tangenta na graf v stacionarni točki je vzporedna abscisni osi.

Definicija 4.0.44 (Lokalni minimum/maksimum, ekstrem). Funkcija f :
[a, b] → R ima v točki x0 ∈ (a, b) lokalni minimum, če obstaja δ > 0 tako,
da f(x0 + h) − f(x0) > 0 za vsak |h| < δ. Ima lokalni maksimum, če obstaja
δ > 0 tako, da f(x0 + h) − f(x0) < 0 za vsak |h| < δ. Če ima f v x0 lokalni
minimum ali maksimum, pravimo, da ima v x0 lokalni ekstrem.

Izrek 4.0.45 (Fermatov izrek). Če ima odvedljiva funkcija f : [a, b] → R v
točki x0 ∈ (a, b) lokalni ekstrem, potem je f ′(x0) = 0; torej je x0 stacionarna
točka.

Opomba 4.0.46. Obratno ne velja nujno: npr. f(x) = x3 +1 ima v x0 = 0
stacionarno točko, vendar tam ni lokalnega ekstrema.

Izrek 4.0.47 (Rolleov izrek). Naj bo f : [a, b] → R odvedljiva in naj bo
f(a) = f(b). Potem obstaja vsaj ena točka x0 ∈ (a, b), za katero velja
f ′(x0) = 0.

Izrek 4.0.48 (Lagrangeov izrek o povprečni vrednosti). Naj bo f : [a, b] →
R odvedljiva. Potem obstaja x0 ∈ (a, b), da

f ′(x0) = f(b) − f(a)
b − a

.

Izrek 4.0.49. Naj bo f : [a, b] → R odvedljiva in naj bo f ′(x) = 0 za vsak
x ∈ [a, b]. Tedaj je f konstantna funkcija.

Izrek 4.0.50. Naj bosta f, g : [a, b] → R odvedljivi in naj bo f ′(x) = g′(x)
za vse x ∈ [a, b]. Potem obstaja konstanta c ∈ R tako, da f(x) = g(x) + c.
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Izrek 4.0.51 (Kriterij z znakom prvega odvoda). Naj bo f : [a, b] → R
odvedljiva in x0 ∈ (a, b) stacionarna točka. Če f ′ v okolici x0 (levo-desno)
zamenja predznak, ima f v x0 lokalni ekstrem (prehod + → −: maksimum;
− → +: minimum). Če ima f ′ v okolici x0, razen v x0, isti predznak, potem
f v x0 nima lokalnega ekstrema.

Definicija 4.0.52 (Konveksnost). Funkcija f : [a, b] → R je konveksna na
[a, b], če za vsak [c, d] ⊆ [a, b] in vsak x ∈ [c, d] velja

f(x) ≤ f(c) + f(d) − f(c)
d − c

(x − c).

Torej graf f na [c, d] leži pod tetivo skozi točki (c, f(c)) in (d, f(d)).

Definicija 4.0.53 (Konkavnost). Funkcija f : [a, b] → R je konkavna na
[a, b], če za vsak [c, d] ⊆ [a, b] in vsak x ∈ [c, d] velja

f(x) ≥ f(c) + f(d) − f(c)
d − c

(x − c).

Torej graf f na [c, d] leži nad tetivo skozi (c, f(c)) in (d, f(d)).

Definicija 4.0.54 (Prevoj). Točka x0 je prevoj funkcije f , če se v x0 f
spremeni iz konveksne v konkavno ali obratno.

Izrek 4.0.55 (Drugi odvod in oblika grafa). Naj bo f : [a, b] → R dvakrat
odvedljiva.

• Če f ′′(x) > 0 za vsak x ∈ (a, b), je f konveksna na [a, b].

• Če f ′′(x) < 0 za vsak x ∈ (a, b), je f konkavna na [a, b].

• Če f ′′(x0) = 0 in f ′′ pri prehodu skozi x0 zamenja predznak, je x0
prevoj.

Izrek 4.0.56 (Drugi odvod v stacionarni točki). Naj bo f : [a, b] → R
dvakrat odvedljiva in x0 ∈ (a, b) stacionarna točka (f ′(x0) = 0).

• Če f ′′(x0) > 0, ima f v x0 lokalni minimum.

• Če f ′′(x0) < 0, ima f v x0 lokalni maksimum.

Izrek 4.0.57 (Ekstrem na zaprtem intervalu). Naj bo f : [a, b] → R zvezna.
Potem f na [a, b] doseže največjo in najmanjšo vrednost. Če je f odvedljiva,
se lahko notranji ekstremi pojavijo v stacionarnih točkah; ekstrem je lahko
tudi v krajiščih ali tam, kjer f ni odvedljiva.
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Primer 4.0.58 (Ekstremi funkcije f(x) = (x2+x+2)(x2+x−2)). Zapišimo
g(x) = x2 + x, tedaj f(x) = g(x)2 − 4.

f ′(x) = 2g(x) g′(x) = 2(x2 + x)(2x + 1) = 2x(x + 1)(2x + 1).
Stacionarne točke so

x1 = 0, x2 = −1
2 , x3 = −1.

Drugi odvod:
f ′′(x) = 12x2 + 12x + 2.

Klasifikacija:
f ′′(0) = 2 > 0 ⇒ lokalni minimum pri x = 0, f ′′(−1

2) = −1 < 0 ⇒ lokalni maksimum,

f ′′(−1) = 2 > 0 ⇒ lokalni minimum pri x = −1.

—

L’Hospitalovo pravilo

Izrek 4.0.59. Če limx→a
u(x)
v(x) vodi v obliko 0

0 ali ∞
∞ , potem

lim
x→a

u(x)
v(x) = lim

x→a

u′(x)
v′(x) ,

če desna limita obstaja.
Primer 4.0.60.

lim
x→0

sin x

x
= lim

x→0

cos x

1 = 1.

Primer 4.0.61.
lim

x→∞
log x

x
= lim

x→∞
1/x

1 = 0.

Integrali

Nedoločeni integral

Nedoločen integral
Naj bo f : (a, b) → R dana funkcija. Funkcijo F : (a, b) → R, za katero za
vsak x ∈ (a, b) velja

F ′(x) = f(x),
imenujemo nedoločen integral (oz. primitivna funkcija) funkcije f in pišemo

F (x) =
∫

f(x) dx.
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Izrek. Če je F nedoločen integral funkcije f , je tudi F +C nedoločen inte-
gral funkcije f za poljubno konstanto C. Obratno, vsak nedoločen integral
funkcije f je oblike F + C za neko fiksno primitivno funkcijo F .

Tabela integralov elementarnih funkcij

Za konstanto C ∈ R veljajo:∫
xn dx = xn+1

n + 1 + C (n ̸= −1),
∫ 1

x
dx = log |x| + C,

∫
ex dx = ex + C,

∫
ax dx = ax

log a
+ C (a > 0, a ̸= 1),∫

sin x dx = − cos x + C,

∫
cos x dx = sin x + C,∫

sec2 x dx = tan x + C,

∫ 1
1 + x2 dx = arctan x + C,∫ 1√

1 − x2
dx = arcsin x + C,

∫ 1√
1 + x2

dx = log
(
x +

√
1 + x2)+ C.

Pravila za integriranje

Vsa pravila sledijo iz pravil za odvajanje.

• Linearnost:∫ (
f(x)+g(x)

)
dx =

∫
f(x) dx+

∫
g(x) dx,

∫
k f(x) dx = k

∫
f(x) dx.

• Zamenjava spremenljivke (substitucija). Če je x = x(t) odvedljiva
funkcija in obstaja

∫
f(x) dx, potem∫
f(x) dx =

∫
f
(
x(t)

)
x′(t) dt.

• Integracija po delih. Če obstaja eden izmed integralov
∫

f(x)g′(x) dx
in
∫

f ′(x)g(x) dx, potem obstaja tudi drugi in∫
f(x)g′(x) dx +

∫
f ′(x)g(x) dx = f(x)g(x) + C,

kar običajno zapišemo kot∫
u dv = u v −

∫
v du.
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Določen integral in Riemannove vsote

Naj bo f : [a, b] → R zvezna in (zaradi zveznosti) omejena funkcija. Ploščino
med grafom f in osjo x na [a, b] aproksimiramo s ploščinami pravokotnikov.

Razdelimo [a, b] na delitev a = x0 < x1 < · · · < xn = b in na vsakem
[xk−1, xk] izberemo ξk ∈ [xk−1, xk]. Riemannova (integralska) vsota je

S(f ; D, ξ) =
n∑

k=1
f(ξk) (xk − xk−1).

Če obstaja limita teh vsot, ko gre dolžina najdaljšega podintervala maxk(xk−
xk−1) proti 0, pravimo, da je f Riemannovo integrabilna na [a, b] in defini-
ramo ∫ b

a
f(x) dx = lim

max(xk−xk−1)→0

n∑
k=1

f(ξk) (xk − xk−1).

(Dodatek) Temeljni izrek integralnega računa. Če je f zvezna na
[a, b] in F njena primitivna funkcija, potem∫ b

a
f(x) dx = F (b) − F (a).

Izrek 4.0.62. Naj bo f : [a, b] → R zvezna funkcija na intervalu [a, b].
Potem je f na tem intervalu integrabilna.

Opomba 4.0.63. Vsaka zvezna funkcija na zaprtem intervalu je integra-
bilna. Integrabilnih funkcij pa je še veliko več. Na primer, vsaka odsekoma
zvezna funkcija je integrabilna (funkcija je odsekoma zvezna, če ima končno
ali števno neskončno točk nezveznosti).

Lastnosti določenega integrala

1. Integracijsko spremenljivko lahko poljubno označimo:∫ b

a
f(x) dx =

∫ b

a
f(t) dt.

2. Če integralu zamenjamo meji, se spremeni predznak:∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.
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3. Integral z enakima mejama je enak nič:∫ a

a
f(x) dx = 0.

4. Naj bo f integrabilna na intervalu [a, b] in naj bo λ ∈ R konstanta.
Potem je ∫ b

a
λf(x) dx = λ

∫ b

a
f(x) dx.

5. Naj bosta f in g integrabilni na intervalu [a, b]. Potem je∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx.

6. Naj bo a < c < b. Funkcija f je na intervalu [a, b] integrabilna natanko
tedaj, ko je integrabilna na vsakem izmed podintervalov [a, c] in [c, b].
Velja ∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx.

7. Če sta f in g integrabilni in je f(x) ≤ g(x) za vsak x ∈ [a, b], potem je∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Izrek 4.0.64 (Izrek o povprečni vrednosti). Naj bo m natančna spodnja
meja in M natančna zgornja meja integrabilne funkcije f na intervalu [a, b].
Potem obstaja tako število P , da je m ≤ P ≤ M in

P = 1
b − a

∫ b

a
f(x) dx.

Če je funkcija f tudi zvezna na intervalu [a, b], potem obstaja vsaj ena taka
točka ξ ∈ [a, b], da je

f(ξ) = 1
b − a

∫ b

a
f(x) dx.

Opomba 4.0.65. Naj bo f pozitivna funkcija. Ploščina območja pod
grafom funkcije f nad intervalom [a, b] je:

• večja od ploščine pravokotnika z osnovnico [a, b] in višino, ki je enaka
minimalni vrednosti funkcije f ;
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• manjša od ploščine pravokotnika z osnovnico [a, b] in višino, ki je enaka
maksimalni vrednosti funkcije f .

Torej je ploščina območja pod grafom funkcije f nad intervalom [a, b] enaka
ploščini pravokotnika z osnovnico [a, b] in višino, ki je med minimalno in
maksimalno vrednostjo funkcije f .

Izrek 4.0.66. Naj bo funkcija f integrabilna na intervalu [a, b]. Potem je∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Torej je absolutna vrednost integrala manjša ali enaka integralu absolutne
vrednosti.

Dokaz. Za vsako integralsko vsoto po trikotniški neenakosti velja∣∣∣∣∣
n∑

k=1
f(ξk)(xk − xk−1)

∣∣∣∣∣ ≤
n∑

k=1
|f(ξk)| (xk − xk−1),

pri čemer smo upoštevali, da je |xk − xk−1| = xk − xk−1. V limiti je
leva stran neenakosti enaka

∣∣∣∫ b
a f(x) dx

∣∣∣, desna stran neenakosti pa je enaka∫ b
a |f(x)| dx.

Zveza med določenim in nedoločenim integralom

Definicija 4.0.67. Naj bo f : [a, b] → R zvezna in zato integrabilna funkcija.
Potem za vsak x ∈ [a, b] obstaja integral

∫ x
a f(t) dt, zato lahko definiramo

funkcijo F : [a, b] → R s predpisom

F (x) =
∫ x

a
f(t) dt.

Izrek 4.0.68 (Osnovni izrek analize). Naj bo f : [a, b] → R zvezna funkcija.
Potem je funkcija

F (x) =
∫ x

a
f(t) dt

odvedljiva in velja
F ′(x) = d

dx

∫ x

a
f(t) dt = f(x).

Opomba 4.0.69. Funkcija F je zvezna, saj je vsaka odvedljiva funkcija
tudi zvezna.
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F ′(x) = lim
h→0

F (x + h) − F (x)
h

= lim
h→0

f(ξ) = f(x).

Izrek 4.0.70 (Newton–Leibnitzeva formula). Naj bo f : [a, b] → R zvezna
funkcija in naj bo G poljuben nedoločen integral funkcije f , torej

G(x) =
∫

f(x) dx.

Potem je ∫ b

a
f(x) dx = G(b) − G(a).

Opomba 4.0.71. Newton–Leibnitzeva formula pove, kako lahko izraču-
namo določeni integral

∫ b
a f(x) dx funkcije f na intervalu [a, b]. Najprej

poiščemo nedoločen integral G funkcije f in nato izračunamo razliko funkci-
jskih vrednosti G(x)

∣∣b
a

= G(b) − G(a).
Tudi v določeni integral lahko vpeljemo novo spremenljivko.

Izrek 4.0.72 (Substitucija). Naj bo u : [a, b] → R zvezno odvedljiva funkcija,
torej je u′ zvezna funkcija, in naj bo f zvezna funkcija na zalogi vrednosti
funkcije u. Potem je∫ b

a
f
(
u(x)

)
u′(x) dx =

∫ u(b)

u(a)
f(u) du.

Prav tako lahko uporabimo pri računanju določenih integralov tudi metodo
per partes.
Izrek 4.0.73 (Računanje per partes). Če sta f in g odvedljivi funkciji na
intervalu [a, b], potem velja∫ b

a
f(x)g′(x) dx = f(x)g(x)

∣∣∣b
a

−
∫ b

a
f ′(x)g(x) dx.

Posplošeni integral

Oglejmo si, kako lahko posplošimo definicijo določenega integrala v primeru,
ko je funkcija f neomejena, in v primeru, ko je interval, po katerem integri-
ramo funkcijo f , neomejen.

Če funkcija f v enem izmed krajišč intervala [a, b], na primer v b, ni
omejena, obstaja pa integral na vsakem manjšem intervalu in obstaja tudi
limita, potem pišemo∫ b

a
f(x) dx = lim

ε→0

∫ b−ε

a
f(x) dx.
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Če je funkcija f integrabilna na vsakem končnem intervalu in obstaja
tudi limita, ko meje intervala poljubno povečamo, potem pišemo∫ ∞

a
f(x) dx = lim

M→∞

∫ M

a
f(x) dx.

Uporaba določenega integrala

Izračun ploščine lika. Naj bo f : [a, b] → R pozitivna integrabilna funkcija.
Potem je po definiciji določenega integrala∫ b

a
f(x) dx

ravno ploščina med abscisno osjo in grafom funkcije f na intervalu [a, b].
Če integrabilna funkcija f : [a, b] → R na intervalu [a, b] ni povsod pozi-

tivna, potem interval [a, b] razdelimo na taki podmnožici, da je na eni podm-
nožici funkcija nenegativna in na drugi negativna. Ploščina med abscisno
osjo in grafom funkcije f je potem vsota integrala funkcije f na prvi podm-
nožici in integrala funkcije f na drugi podmnožici, pomnoženega z −1.

Naj bosta g, f : [a, b] → R integrabilni funkciji in naj bo f(x) ≥ g(x) za
vsak x ∈ [a, b]. Potem je ploščina območja med grafoma funkcij f in g na
intervalu [a, b] enaka ∫ b

a

(
f(x) − g(x)

)
dx.

Če f(x) ni večja od g(x) za vsak x, potem, podobno kot prej, razdelimo
interval [a, b] na dve podmnožici in na podmnožici, kjer je f(x) < g(x),
integral pomnožimo z −1.

Posledica:
∫ a

−a f(x)dx = 0 če je f liha funkcija in
∫ a

−a f(x)dx = 2
∫ a

0 f(x),
če je f soda.
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Matematično upanje je abstraktna idealizacija povprečja.
Definicija. Matematično upanje ali pričakovana vrednost slučajne spre-

menljivke X, ki ga označimo z µ ali E(X), je definirano s predpisom

E(X) =
n∑

i=1
xi f(xi),

kjer x1, . . . , xn označujejo možne vrednosti slučajne spremenljivke X, f(xi) =
P (X = xi) pa pripadajoče verjetnosti.

Primer. Pri metu kovanca dobimo 2 evra, če pade zgornja stran ko-
vanca, če pa pade spodnja stran kovanca, dva evra plačamo (tj. izgubimo
2 evra). Verjetnost, da pade zgornja stran kovanca, je 0,49, verjetnost, da
pade spodnja stran kovanca, pa 0,51.

Kolikšna je pričakovana izguba, če smo vrgli kovanec 100-krat?
Rešitev. Naj bo X slučajna spremenljivka, ki predstavlja dobiček pri

enem metu (v evrih). Potem velja

X =

2, z verjetnostjo 0,49,

−2, z verjetnostjo 0,51.

Zato je matematično upanje pri enem metu

E(X) = 2 · 0,49 + (−2) · 0,51 = 0,98 − 1,02 = −0,04.

Pričakovan dobiček pri enem metu je torej −0,04 evra, kar pomeni pričako-
vano izgubo 0,04 evra.

Naj bo zdaj S100 = X1+X2+· · ·+X100 vsota dobičkov pri 100 neodvisnih
metih. Potem

E(S100) =
100∑
k=1

E(Xk) = 100 · E(X) = 100 · (−0,04) = −4.

53
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Pričakovana izguba pri 100 metih je torej

4 evre.

Definicija. Varianca slučajne spremenljivke X, ki jo označimo z σ2 ali
V (X) ali Var(X), je definirana s predpisom

V (X) = E
(
(X − µ)2) =

n∑
i=1

(xi − µ)2 f(xi),

kjer je µ = E(X) matematično upanje slučajne spremenljivke X.
Standardni odklon (standardna deviacija) slučajne spremenljivke X je

σ =
√

σ2 =
√

V (X).

Velja tudi uporabna formula

V (X) = E(X2) −
(
E(X)

)2
.

Primer. Izračunajmo varianco slučajne spremenljivke X iz prejšnjega
primera.

Rešitev. Iz prejšnjega primera vemo, da

P (X = 2) = 0,49, P (X = −2) = 0,51,

in da je
E(X) = −0,04.

Najprej izračunamo

E(X2) = 22 · 0,49 + (−2)2 · 0,51 = 4 · 0,49 + 4 · 0,51 = 4 · (0,49 + 0,51) = 4.

Zato je varianca

V (X) = E(X2) − (E(X))2 = 4 − (−0,04)2 = 4 − 0,0016 = 3,9984.

Standardni odklon je

σ =
√

V (X) ≈
√

3,9984 ≈ 1,9996 ≈ 2.

Opomba. Slučajni spremenljivki imata lahko enako matematično up-
anje in različno varianco. To pomeni, da imata lahko enako povprečno
vrednost, vendar se ena okoli te vrednosti bolj »razprši« kot druga.
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Trditev. Za diskretno slučajno spremenljivko X z gostoto verjetnosti f
in za funkcijo h velja

E(h(X)) =
n∑

i=1
h(xi) f(xi),

kjer x1, . . . , xn označujejo vrednosti slučajne spremenljivke X.
Definicija. Slučajno spremenljivko, ki je enaka številu uspešnih Bernoul-

lijevih poskusov, imenujemo binomska slučajna spremenljivka.
Če je X binomska slučajna spremenljivka s parametroma n in p, potem

je njena gostota verjetnosti

f(x) = P (X = x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n.

Trditev. Če je X binomska slučajna spremenljivka s parametroma n in
p, potem

µ = E(X) = np,

varianca pa je
V (X) = np(1 − p).

Definicija. Slučajno spremenljivko, ki je enaka številu Bernoullijevih
poskusov do prvega uspešnega poskusa, imenujemo geometrijska slučajna
spremenljivka.

Gostota verjetnosti geometrijske slučajne spremenljivke X s parametrom
p je

f(x) = P (X = x) = (1 − p)x−1 p, x = 1, 2, . . .

Trditev. Če je X geometrijska slučajna spremenljivka s parametrom p,
potem je

µ = E(X) = 1
p

,

varianca pa je
V (X) = 1 − p

p2 .

Definicija. Naj bo poskus sestavljen iz Bernoullijevih poskusov, ki so
med seboj neodvisni, v vsakem poskusu sta le dva možna izida (»uspeh« ali
»neuspeh«), verjetnost uspeha v vsakem poskusu pa je enaka p.

Slučajno spremenljivko, ki je enaka številu Bernoullijevih poskusov do
r-tega uspešnega poskusa, imenujemo negativna binomska slučajna spre-
menljivka.
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Gostota verjetnosti negativne binomske slučajne spremenljivke X je

f(x) = P (X = x) =
(

x − 1
r − 1

)
(1 − p)x−rpr, x = r, r + 1, r + 2, . . .

Trditev. Če je X negativna binomska slučajna spremenljivka s parametroma
r in p, potem je

µ = E(X) = r

p
,

varianca pa je
V (X) = r(1 − p)

p2 .

Primer. Elektronska tehtnica na avtomatski polnilni liniji ustavi proizvod-
njo, če so tri embalaže napolnjene manj od zahtevane vrednosti. Verjetnost,
da je polnjenje prelahko, je p = 0,001. Vsa polnjenja so neodvisna.

1. Kolikšna je verjetnost, da se proizvodnja ustavi po 3, po 100, po 1000,
po 3000 napolnjenih embalažah?

2. Koliko embalaž je v povprečju napolnjenih, preden se proizvodnja us-
tavi?

Rešitev.
Naj bo X slučajna spremenljivka, ki označuje število vseh napolnjenih

embalaž do ustavitve proizvodnje (vključno s tisto embalažo, ki povzroči
ustavitev).

Ustavitev se zgodi, ko se pojavi tretja prelahko napolnjena embalaža.
Vsaka embalaža je neodvisen Bernoullijev poskus z verjetnostjo »uspeha«
(prelahkega polnjenja) p = 0,001.

Zato je X negativna binomska slučajna spremenljivka s parametroma

r = 3, p = 0,001.

Velja torej

P (X = x) =
(

x − 1
r − 1

)
(1−p)x−rpr =

(
x − 1

2

)
(1−p)x−3p3, x = 3, 4, 5, . . .

1. Za posamezne vrednosti dobimo:

P (X = 3) =
(

2
2

)
(1 − p)0p3 = 1 · 1 · p3 = p3 = (0,001)3 = 10−9.
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P (X = 100) =
(

99
2

)
(1 − p)97p3.

P (X = 1000) =
(

999
2

)
(1 − p)997p3.

P (X = 3000) =
(

2999
2

)
(1 − p)2997p3.

To so vse zelo majhne verjetnosti; največja verjetnost bo v okolici
matematičnega upanja E(X) (glej točko 2.

2. Iz trditve za negativno binomsko porazdelitev sledi

E(X) = r

p
= 3

0,001 = 3000.

V povprečju bo torej napolnjenih

3000 embalaž

preden se proizvodnja ustavi.

Definicija. Naj bo v končni množici z N elementi K »slabih« elemen-
tov. Iz množice naključno brez vračanja izberemo n elementov. Slučajno
spremenljivko, ki je enaka številu slabih elementov v vzorcu, imenujemo
hipergeometrijska slučajna spremenljivka.

Gostota verjetnosti hipergeometrijske slučajne spremenljivke X je

f(x) = P (X = x) =
(K

x

)(N−K
n−x

)(N
n

) , x = 0, 1, . . . , n,

pri čemer so vrednosti x omejene tudi z 0 ≤ x ≤ K in 0 ≤ n − x ≤ N − K
(tj. x ne more biti večje od K in ne manjše od n − (N − K)).

Če označimo p = K

N
(delež slabih elementov v populaciji), potem velja:

Trditev. Za hipergeometrijsko slučajno spremenljivko X velja

E(X) = np, V (X) = np(1 − p) N − n

N − 1 .
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Naj bo X binomska slučajna spremenljivka za n Bernoullijevih poskusov
z verjetnostjo p. Označimo

E(X) = np = λ.

Potem je

P [X = x] =
(

n

x

)
px(1 − p)n−x =

(
n

x

)(λ

n

)x(
1 − λ

n

)n−x
.

Za n → ∞, p → 0 tako, da np = λ ostane konstanten, dobimo Poissonovo
porazdelitev.

Poissonov proces. Na danem intervalu se naključno pojavljajo števila.
V povprečju se jih pojavi λ. Denimo, da lahko interval razdelimo na podin-
tervale, tako da velja:

• verjetnost, da se na podintervalu pojavi več kot eno število, je zane-
marljiva (približno 0);

• verjetnost, da se na podintervalu pojavi število, je enaka za vse pod-
intervale in sorazmerna z dolžino podintervala;

• če se število pojavi na nekem podintervalu, je to neodvisno od doga-
janja na ostalih podintervalih.

Definicija. Slučajna spremenljivka X, ki je enaka številu pojavljenih
»dogodkov« na intervalu pri Poissonovem procesu, se imenuje Poissonova
slučajna spremenljivka s parametrom λ > 0.

Definicija. Gostota verjetnosti (porazdelitvena funkcija mase) Pois-
sonove slučajne spremenljivke X je

f(x) = P (X = x) = e−λλx

x! , x = 0, 1, 2, . . . .

Trditev. Za Poissonovo slučajno spremenljivko X s parametrom λ velja

E(X) = λ, V (X) = λ.

Primer. Pri proizvodnji optičnega diska se na 1 cm2 v povprečju pojavi
0,1 delec nečistoče. Proizvajamo disk s površino 100 cm2.

1. Kolikšna je verjetnost, da se na disku pojavi 12 delcev nečistoče?

2. Optični disk zavržemo, če ima več kot 3 delce nečistoče. Kolikšna je
verjetnost, da izdelani disk zavržemo?
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Rešitev.
Naj bo X slučajna spremenljivka, ki predstavlja število delcev nečistoče

na enem disku.
Povprečno število delcev na celotnem disku je

λ = 0,1 · 100 = 10.

Zato modeliramo X kot Poissonovo slučajno spremenljivko s parametrom
λ = 10:

P (X = x) = e−1010x

x! , x = 0, 1, 2, . . .

1. Verjetnost, da se na disku pojavi natanko 12 delcev nečistoče, je

P (X = 12) = e−101012

12! .

To je lahko tudi numerično približamo (po želji), a v zapiskih običajno
pustimo v tej obliki.

2. Disk zavržemo, če ima več kot 3 delce, torej za dogodek {X > 3}.
Zato

P (disk zavržemo) = P (X > 3) = 1 − P (X ≤ 3) = 1 −
3∑

k=0
P (X = k).

Ker je X ∼ Poisson(10), dobimo

P (X ≤ 3) =
3∑

k=0

e−1010k

k! = e−10
(
1 + 10 + 102

2! + 103

3!
)
,

zato
P (disk zavržemo) = 1 − e−10

(
1 + 10 + 102

2! + 103

3!
)
.

To je iskana verjetnost. Če želimo, jo lahko še numerično ocenimo,
vendar je v teoretičnih zapiskih tak zapis povsem zadovoljiv.

Zvezna slučajna spremenljivka.
Primeri:

• temperatura spojine ob koncu kemične reakcije;

• dolžina sestavnega dela;
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• napetost v napeljavi;

• potreben čas, da se izvede poskus.

Definicija. Zaloga vrednosti zvezne slučajne spremenljivke X je enaka
množici realnih števil R. Gostota verjetnosti (verjetnostna funkcija) f zvezne
slučajne spremenljivke X je funkcija, za katero velja:

• f(x) ≥ 0 za vse x ∈ R;

• ∫ ∞

−∞
f(x) dx = 1;

• za vsak interval [a, b] velja

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx.

Opomba. Za zvezno slučajno spremenljivko velja

P (X = a) = 0

za vsak a ∈ R.
Opomba. Za poljubni realni števili x1 < x2 velja

P (x1 ≤ X ≤ x2) = P (x1 < X ≤ x2) = P (x1 ≤ X < x2) = P (x1 < X < x2),

ker je verjetnost posamezne točke enaka 0.
Definicija. Kumulativna ali porazdelitvena funkcija F zvezne slučajne

spremenljivke X je funkcija

F (x) = P (X ≤ x) =
∫ x

−∞
f(t) dt.

Trditev. Če je X zvezna slučajna spremenljivka z gostoto verjetnosti
f , potem je

d

dx
F (x) = f(x)

za vse tiste x, kjer je f zvezna.
Definicija. Matematično upanje (pričakovana vrednost) zvezne slučajne

spremenljivke X je definirano s predpisom

µ = E(X) =
∫ ∞

−∞
xf(x) dx.
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Definicija. Varianca slučajne spremenljivke X je definirana s predpisom

V (X) = E
(
(X − µ)2) =

∫ ∞

−∞
(x − µ)2f(x) dx.

Standardni odklon (standardna deviacija) slučajne spremenljivke X je

σ =
√

σ2 =
√

V (X).

Trditev. Za zvezno slučajno spremenljivko X z gostoto verjetnosti f in
za funkcijo h velja

E
(
h(X)

)
=
∫ ∞

−∞
h(x) f(x) dx.

5.1 Primeri zveznih slučajnih spremenljivk

Enakomerna porazdelitev

Definicija 5.1.1. Zvezna slučajna spremenljivka X je enakomerno porazdel-
jena na intervalu [a, b], kar označimo z

X ∼ U(a, b),

če ima gostoto verjetnosti

fX(x) =


1

b − a
, a ≤ x ≤ b,

0, sicer.

Trditev 5.1.2. Naj bo X ∼ U(a, b). Tedaj velja

µ = E(X) = a + b

2
in

Var(X) = (b − a)2

12 .

Dokaz. Ker je X zvezna slučajna spremenljivka z gostoto fX(x) = 1
b−a na

[a, b], dobimo za pričakovano vrednost

E(X) =
∫ ∞

−∞
xfX(x) dx =

∫ b

a
x · 1

b − a
dx = 1

b − a

∫ b

a
x dx.
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Izračunamo integral:∫ b

a
x dx =

[
x2

2

]b

a

= b2 − a2

2 = (b − a)(b + a)
2 .

Zato
E(X) = 1

b − a
· (b − a)(b + a)

2 = a + b

2 .

Za varianco uporabimo definicijo
Var(X) = E(X2) − E(X)2.

Najprej izračunamo E(X2):

E(X2) =
∫ ∞

−∞
x2fX(x) dx =

∫ b

a
x2 · 1

b − a
dx = 1

b − a

∫ b

a
x2 dx.

Integral je ∫ b

a
x2 dx =

[
x3

3

]b

a

= b3 − a3

3 .

Torej

E(X2) = 1
b − a

· b3 − a3

3 = b3 − a3

3(b − a) .

Uporabimo razcep b3 − a3 = (b − a)(b2 + ab + a2):

E(X2) = (b − a)(b2 + ab + a2)
3(b − a) = a2 + ab + b2

3 .

Ker je E(X) = a+b
2 , dobimo

Var(X) = E(X2) − E(X)2 = a2 + ab + b2

3 −
(

a + b

2

)2
.

Sedaj (
a + b

2

)2
= a2 + 2ab + b2

4 ,

zato
Var(X) = a2 + ab + b2

3 − a2 + 2ab + b2

4 .

Zapišimo z enakim imenovalcem 12:

Var(X) = 4(a2 + ab + b2) − 3(a2 + 2ab + b2)
12 = 4a2 + 4ab + 4b2 − 3a2 − 6ab − 3b2

12

= a2 − 2ab + b2

12 = (b − a)2

12 .

S tem je trditev dokazana.
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Enakomerna porazdelitev – primer

Primer 5.1.3. Slučajna spremenljivka X je enaka toku (v mA), ki ga izme-
rimo v tanki bakreni žici. Privzamemo, da je X enakomerno porazdeljena z
vrednostmi od 0 do 10 mA, torej

X ∼ U(0, 10).

1. Kolikšna je verjetnost, da je izmerjeni tok manjši od 2 mA?
Ker je gostota

fX(x) =


1

10 − 0 = 1
10 , 0 ≤ x ≤ 10,

0, sicer,

dobimo
P(X < 2) =

∫ 2

0

1
10 dx = 1

10 · 2 = 0,2.

2. Koliko je matematično upanje in koliko standardna deviacija?
Za enakomerno porazdelitev U(a, b) veljata

E(X) = a + b

2 , Var(X) = (b − a)2

12 .

Tukaj je a = 0, b = 10, zato

E(X) = 0 + 10
2 = 5 mA,

Var(X) = (10 − 0)2

12 = 100
12 = 25

3 ,

standardna deviacija pa je

σX =
√

Var(X) =
√

25
3 = 5√

3
≈ 2,89 mA.

Normalna porazdelitev

Definicija 5.1.4. Zvezna slučajna spremenljivka X je normalno porazdel-
jena s parametroma µ ∈ R in σ > 0, kar označimo z

X ∼ N (µ, σ2),

če je njena gostota verjetnosti

fX(x) = 1√
2π σ

exp
(

− (x − µ)2

2σ2

)
, x ∈ R.
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Trditev 5.1.5. Naj bo X ∼ N (µ, σ2). Tedaj velja

E(X) = µ, Var(X) = σ2.

Dokaz. Dokažimo le pričakovano vrednost pričakovano vrednost:

E(X) =
∫ ∞

−∞
xfX(x) dx =

∫ ∞

−∞
x

1√
2π σ

exp
(

− (x − µ)2

2σ2

)
dx.

Uvedemo novo spremenljivko

y = x − µ =⇒ x = y + µ, dx = dy.

Dobimo
E(X) =

∫ ∞

−∞
(y + µ) 1√

2π σ
exp

(
− y2

2σ2

)
dy.

Razcepimo integral na dva dela:

E(X) =
∫ ∞

−∞
y

1√
2π σ

e−y2/(2σ2) dy︸ ︷︷ ︸
I1

+ µ

∫ ∞

−∞

1√
2π σ

e−y2/(2σ2) dy︸ ︷︷ ︸
I2

.

• Integral I1 je 0, ker je funkcija y 7→ y e−y2/(2σ2) liha, integriramo pa
po simetričnem intervalu (−∞, ∞):

I1 = 0.

• Integral I2 je enak 1, saj gre za celoten integral gostote normalne
porazdelitve s parametroma (0, σ):

I2 = 1.

Tako dobimo
E(X) = 0 + µ · 1 = µ.

Standardizirana normalna spremenljivka

Definicija 5.1.6. Zvezna slučajna spremenljivka X je standardizirana nor-
malna spremenljivka, če je X ∼ N (0, 1), torej ima µ = 0 in σ = 1. Označimo
jo z Z in njena gostota je

fZ(z) = 1√
2π

e−z2/2, z ∈ R.
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Trditev 5.1.7. Naj bo X slučajna spremenljivka s končno varianco Var(X)
in

Y = a + bX,

kjer sta a, b ∈ R. Potem velja

Var(Y ) = b2 Var(X).

Dokaz. Po definiciji variance imamo

Var(Y ) = E
[
(Y − E(Y ))2].

Ker je
E(Y ) = E(a + bX) = a + b E(X),

sledi
Y − E(Y ) = a + bX −

(
a + b E(X)

)
= b

(
X − E(X)

)
.

Zato

Var(Y ) = E
[
(Y −E(Y ))2] = E

[
b2(X−E(X))2] = b2 E

[
(X−E(X))2] = b2 Var(X).

Trditev 5.1.8. Naj bo X normalna slučajna spremenljivka s parametroma
µ in σ > 0, torej X ∼ N (µ, σ2). Potem je

Z = X − µ

σ

standardizirana normalna spremenljivka, tj. Z ∼ N (0, 1).

Dokaz. E(Z) = 0, izračun za varianco pa sledi iz prejšnje trditve.

Primer – teža prvošolcev

Statistični podatki so pokazali, da 15% slovenskih prvošolcev tehta manj kot
25 kg, 10% pa več kot 33 kg. Predpostavimo, da je teža prvošolcev zvezna
in (približno) normalno porazdeljena:

X ∼ N (µ, σ2).
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1. Ocenite, koliko v povprečju tehta slovenski prvošolec.
Iz podatkov:

P(X < 25) = 0,15, P(X > 33) = 0,10.

Druga enakost pomeni P(X ≤ 33) = 0,90.
Standardiziramo:

Z = X − µ

σ
∼ N (0, 1).

Potem
P(X < 25) = P

(
Z <

25 − µ

σ

)
= 0,15,

P(X ≤ 33) = P
(

Z ≤ 33 − µ

σ

)
= 0,90.

Označimo kvantile standardne normalne porazdelitve z zp, tako da
P(Z < zp) = p. Iz tabel normalne porazdelitve (ali računalniško)
dobimo približne vrednosti

z0,15 ≈ −1,04, z0,90 ≈ 1,28.

Tako dobimo sistem
25 − µ

σ
≈ −1,04,

33 − µ

σ
≈ 1,28.

Od tod:
25 − µ ≈ −1,04 σ =⇒ µ ≈ 25 + 1,04 σ,

33 − µ ≈ 1,28 σ =⇒ µ ≈ 33 − 1,28 σ.

Izenačimo desni strani:

25+1,04 σ = 33−1,28 σ =⇒ (1,04+1,28)σ = 8 =⇒ 2,32 σ ≈ 8.

Tako
σ ≈ 8

2,32 ≈ 3,45 ≈ 3,5 kg.

Vstavimo nazaj v µ ≈ 25 + 1,04 σ:

µ ≈ 25 + 1,04 · 3,45 ≈ 25 + 3,59 ≈ 28,6 kg.

Torej je
µ ≈ 28,6 kg, σ ≈ 3,5 kg.
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2. Ali je Tina, ki tehta 22 kg, med 5% najlažjih osnovnošolcev?
Tino modeliramo kot realizacijo X. Standardiziramo njeno težo:

zTina = 22 − µ

σ
≈ 22 − 28,6

3,5 = −6,6
3,5 ≈ −1,89.

Poiščemo P(X ≤ 22) = P(Z ≤ zTina):

P(Z ≤ −1,89) ≈ 0,03.

(iz tabele standardne normale, z ≈ −1,89 da približno 3%).
Torej približno 3% prvošolcev tehta manj kot Tina. To pomeni, da
Tina je med 5% najlažjih osnovnošolcev.

P(X ≤ 22 kg) ≈ 3% < 5%, torej je Tina med 5% najlažjih.

Centralni limitni izrek

Izrek 5.1.9 (Centralni limitni izrek). Naj bodo X1, X2, . . . , Xn enako po-
razdeljene, neodvisne slučajne spremenljivke z matematičnim upanjem µ in
varianco σ2. Označimo

Xn = 1
n

n∑
i=1

Xi.

Potem ima v limiti, ko n → ∞, slučajna spremenljivka

Z = Xn − µ

σ/
√

n

standardizirano normalno porazdelitev.

Primer:
Naj bodo X1, X2, . . . , Xn neodvisne Bernoullijeve slučajne spremenljivke:

Xi =
{

1, če je uspeh,

0, sicer,

pri čemer je
P(Xi = 1) = p, P(Xi = 0) = 1 − p.
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Takrat je
Sn = X1 + · · · + Xn ∼ Bin(n, p),

torej število uspehov v n poskusih.
Za Bernoullijevo spremenljivko velja

E[Xi] = µ = p, Var(Xi) = σ2 = p(1 − p).

Centralni limitni izrek pravi, da za velike n velja približek

Sn − np√
np(1 − p)

≈ N(0, 1),

kjer je N(0, 1) standardna normalna porazdelitev.

Konkretni Primer

Naj bo n = 100 in p = 0,3. Potem

E[S100] = 100 · 0,3 = 30,

Var(S100) = 100 · 0,3 · 0,7 = 21,
√

Var(S100) =
√

21 ≈ 4,583.

Želimo približno izračunati verjetnost

P(25 ≤ S100 ≤ 35).

Standardiziramo:

P(25 ≤ S100 ≤ 35) = P
(25 − 30√

21
≤ S100 − 30√

21
≤ 35 − 30√

21

)
.

Dobimo približno
P(−1,09 ≤ Z ≤ 1,09),

kjer je Z ∼ N(0, 1).
Iz tabel standardne normalne porazdelitve dobimo približje vrednosti

P(Z ≤ 1,09) ≈ 0,862, P(Z ≤ −1,09) ≈ 0,138,

zato
P(25 ≤ S100 ≤ 35) ≈ 0,862 − 0,138 = 0,724.

Tako binomsko porazdelitev Bin(100, 0,3) približamo z normalno po-
razdelitvijo s parametri

N
(
30, 21

)
oziroma standardizirano z N(0, 1).
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Eksponentna porazdelitev

Za eksponentno porazdelitev s parametrom λ > 0 velja

fX(x) = λe−λx, x ≥ 0,

in fX(x) = 0 za x < 0.

Trditev 5.1.10. Če je X eksponentna slučajna spremenljivka s parametrom
λ, potem je

µ = E(X) = 1
λ

, Var(X) = 1
λ2 .
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Chapter 6

Funkcije dveh spremenljivk

Funkcije dveh spremenljivk

Ko opazujemo nek pojav, je ta sicer lahko odvisen od ene količine, bolj
običajno pa je, da je rezultat odvisen od več količin. Na primer:

• kemijska reakcija je odvisna od temperature in tlaka,

• temperatura v prostoru je odvisna od treh koordinat in časa.

Definicija

Realna funkcija f dveh spremenljivk je preslikava, ki slika iz območja D ⊆
R2 v R, torej

f : D → R, (x, y) 7→ f(x, y).

Graf funkcije f dveh spremenljivk, definirane na območju D ⊆ R2 v
tridimenzionalnem koordinatnem sistemu, je množica

Γ(f) = {(x, y, f(x, y)) : (x, y) ∈ D} ⊆ R3,

ki predstavlja ploskev v prostoru.
Pri geometrijski predstavi funkcije f dveh spremenljivk, definirane na

območju D ⊆ R2, si lahko pomagamo tudi z izočrtami (contour lines).
Izočrte funkcije f : D → R so krivulje v D, ki povezujejo tiste točke v D,
pri katerih ima funkcija f isto vrednost.

71
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Primer

Naj bo
f(x, y) = x2 + y2.

Izočrte so koncentrične krožnice.

Zveznost funkcije dveh spremenljivk

Definicija. Funkcija f : D → R, D ⊆ R2, je zvezna v točki (x0, y0) ∈ D, če
za vsak ε > 0 obstaja tak δ > 0, da je

|f(x, y) − f(x0, y0)| < ε

za vsako točko (x, y) ∈ D, za katero velja

|(x, y) − (x0, y0)| < δ,

to je √
(x − x0)2 + (y − y0)2 < δ.

Parcialni odvodi

Naj bo f : D → R, D ⊆ R2, funkcija dveh spremenljivk. Če je vrednost
spremenljivke y fiksna, na primer y = y0, vrednost spremenljivke x pa se
spreminja, postane funkcija f funkcija ene spremenljivke x.

Funkcijo ene spremenljivke pa znamo odvajati. Definirajmo odvod funkcije
dveh spremenljivk po eni izmed spremenljivk, pri čemer je druga izmed spre-
menljivk fiksna.

Definicija. Naj bo f : D → R, D ⊆ R2, funkcija dveh spremenljivk. Če
obstaja limita diferenčnega kvocienta

lim
h→0

f(x + h, y) − f(x, y)
h

,

potem pravimo, da je

∂f

∂x
(x, y) = lim

h→0

f(x + h, y) − f(x, y)
h

parcialni odvod funkcije f po spremenljivki x v točki (x, y). Parcialni odvod
krajše zapišemo tudi kot

∂f

∂x
(x, y) = fx(x, y).
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Podobno definiramo parcialni odvod funkcije f po spremenljivki y s pred-
pisom

∂f

∂y
(x, y) = lim

h→0

f(x, y + h) − f(x, y)
h

.

Primer. Izračunajmo parcialni odvod funkcije

f(x, y) = log(x + xy + y2).

Diferencial funkcije dveh spremenljivk

Če je f funkcija ene spremenljivke, potem je njen diferencial definiran kot

df = f ′(x) dx.

Geometrijska interpretacija diferenciala je, da graf funkcije aproksimiramo
s premico, torej funkcijo aproksimiramo z linearno preslikavo.

Na podoben način definiramo tudi diferencial funkcije dveh spremenljivk.
Če je funkcija f diferenciabilna v točki (a, b), potem je

f(a + h, b + k) =̇ f(a, b) + fx(a, b) h + fy(a, b) k.

S pomočjo diferenciala lahko graf funkcije dveh spremenljivk aproksimiramo
z grafom linearne funkcije, to je ravnino.

Verižna pravila (posredne funkcije)

Oglejmo si pravilo za odvajanje posrednih funkcij, to je verižno pravilo. Naj
bo

z = z(u, v), u = u(x, y), v = v(x, y).

Potem velja
zx = zu ux + zv vx, zy = zu uy + zv vy.

Primer. Naj bo

z = u2 log v, u = x

y
, v = xy.
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Višji odvodi

Če parcialno odvedljivo funkcijo f : D → R, D ⊆ R2, parcialno odvajamo,
sta funkciji fx, fy : R2 → R zopet funkciji dveh spremenljivk.

Če sta parcialno odvedljivi, ju lahko ponovno parcialno odvajamo in
dobimo parcialne odvode drugega reda:

• ∂fx

∂x
(x, y) = fxx(x, y) = ∂2f

∂x2 (x, y),

• ∂fx

∂y
(x, y) = fxy(x, y) = ∂2f

∂y ∂x
(x, y),

• ∂fy

∂x
(x, y) = fyx(x, y) = ∂2f

∂x ∂y
(x, y),

• ∂fy

∂y
(x, y) = fyy(x, y) = ∂2f

∂y2 (x, y).

Izrek. Naj bo f : D → R, D ⊆ R2, dvakrat parcialno odvedljiva
funkcija. Če sta funkciji fxy in fyx zvezni, potem velja

fxy = fyx.

Opomba. V splošnem mešana odvoda funkcije nista enaka.

Hessejeva matrika

Definicija. Matrika drugih parcialnih odvodov funkcije f : D → R, D ⊆
R2, je

H(x, y) =
(

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
,

in se imenuje Hessejeva matrika.
Opomba. Elementi Hessejeve matrike so funkcije.
Opomba. Če sta druga parcialna odvoda funkcije f : D → R, D ⊆ R2,

zvezna, potem je Hessejeva matrika funkcije f simetrična.

Ekstrem funkcije dveh spremenljivk

Definicija. Funkcija f : D → R, D ⊆ R2, ima v točki (a, b) ekstrem, če
obstaja tako število δ > 0, da ima izraz

f(a + h, b + k) − f(a, b) (6.1)
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isti predznak za vsak h, k, za katera velja h2 + k2 < δ2. Če je izraz (6.1)
pozitiven, je v točki (a, b) minimum, če je izraz (6.1) negativen, je v točki
(a, b) maksimum.

Kakšnemu pogoju mora zadoščati funkcija, da bo v točki (a, b) ekstrem?
Če fiksiramo eno izmed neodvisnih spremenljivk, na primer y = b, potem

je funkcija g(x) = f(x, b) funkcija ene spremenljivke; potreben pogoj za
nastop ekstrema funkcije g pa je

g′(a) = fx(a, b) = 0.

Podobno razmislimo, da mora biti tudi fy(a, b) = 0.
Torej je potreben pogoj za nastop ekstrema funkcije dveh spremenljivk

v točki (a, b) pogoj

fx(a, b) = 0, fy(a, b) = 0.

Omenjeni pogoj pa ni tudi zadosten pogoj za nastop ekstrema. Lahko
sta oba parcialna odvoda v neki točki enaka nič, pa v tej točki ni ekstrema
(sedlo).

Točke (x, y), za katere velja

fx(x, y) = 0, fy(x, y) = 0,

imenujemo stacionarne točke funkcije f .

Izrek. Funkcija f : D → R, D ⊆ R2, ima v stacionarni točki (a, b)
ekstrem, če velja

det H(a, b) =
(
fxxfyy − fxyfyx

)
(a, b) > 0.

V tem primeru je za fxx(a, b) > 0 v točki (a, b) minimum, za fxx(a, b) < 0
pa maksimum.

Če je
det H(a, b) =

(
fxxfyy − fxyfyx

)
(a, b) < 0,

v točki (a, b) ni ekstrema (sedlo).
Če je

det H(a, b) =
(
fxxfyy − fxyfyx

)
(a, b) = 0,

s pomočjo drugih parcialnih odvodov ne moremo ugotoviti, ali je v točki
(a, b) ekstrem ali ne.
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Definicija. Matrika drugih parcialnih odvodov funkcije f : D → R,
D ⊆ R2, je

H(x, y) =
(

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
,

in se imenuje Hessejeva matrika.
Opomba. Elementi Hessejeve matrike so funkcije.
Opomba. Če sta druga parcialna odvoda funkcije f : D → R, D ⊆ R2,

zvezna, potem je Hessejeva matrika funkcije f simetrična.

Primer: ekstrem funkcije brez pogojev

Določimo ekstreme funkcije

f(x, y) = 2x2 + y − 2xy − 3x − 3.

Najprej poiščemo stacionarne točke. Izračunamo parcialne odvode:

fx(x, y) = 4x − 2y − 3, fy(x, y) = 1 − 2x.

Stacionarne točke dobimo iz sistema

fx(x, y) = 0, fy(x, y) = 0 :

4x − 2y − 3 = 0, 1 − 2x = 0.

Iz druge enačbe dobimo x = 1
2 . Vstavimo v prvo:

4 · 1
2 − 2y − 3 = 0 =⇒ 2 − 2y − 3 = 0 =⇒ −1 − 2y = 0 =⇒ y = −1

2 .

Stacionarna točka je torej (a, b) =
(

1
2 , −1

2

)
.

Za klasifikacijo izračunamo Hessejevo matriko:

fxx = 4, fyy = 0, fxy = fyx = −2.

Determinanta Hessejeve matrike v stacionarni točki je

det H(a, b) = fxx(a, b)fyy(a, b) − fxy(a, b)2 = 4 · 0 − (−2)2 = −4 < 0.

Ker je det H(a, b) < 0, v točki
(

1
2 , −1

2

)
ni ekstrema, temveč ima funkcija f

tam sedlo.
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Vezani ekstrem

Iščemo ekstrem funkcije f : D → R, D ⊆ R2, pri pogoju, da velja

g(x, y) = 0.

Torej iščemo ekstrem funkcije na neki podmnožici definicijskega območja;
ta podmnožica je določena z zvezo g(x, y) = 0 med spremenljivkama x in y.
Z enačbo g(x, y) = 0 je implicitno določena krivulja v R2.

Oglejmo si Lagrangevo metodo za določanje vezanega ekstrema funkcije
f pri pogoju g(x, y) = 0.

Definiramo novo funkcijo F treh spremenljivk x, y in λ s predpisom

F (x, y, λ) = f(x, y) + λ g(x, y).

Funkcijo F imenujemo Lagrangeva funkcija, parameter λ pa Lagrangev mul-
tiplikator.

Točke, ki so kandidati za vezani ekstrem, poiščemo tako, da poiščemo
stacionarne točke funkcije F , torej

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0.

Dobimo tri enačbe za tri neznanke, pri čemer je zadnja enačba enaka pogoju

g(x, y) = 0.

Primer: ekstrem funkcije pri krožnici

Določimo ekstrem funkcije

f(x, y) = x + 2y

pri pogoju
x2 + y2 = 5.

Definiramo Lagrangevo funkcijo

F (x, y, λ) = x + 2y + λ(x2 + y2 − 5).

Izračunamo parcialne odvode:

Fx = 1 + 2λx, Fy = 2 + 2λy, Fλ = x2 + y2 − 5.
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Stacionarne točke dobimo iz sistema
1 + 2λx = 0,

2 + 2λy = 0,

x2 + y2 − 5 = 0.

Iz prvih dveh enačb izrazimo λ:

λ = − 1
2x

, λ = −1
y

.

Sledi − 1
2x

= −1
y

, torej
y = 2x.

Vstavimo v pogoj:

x2 + (2x)2 = 5 =⇒ x2 + 4x2 = 5 =⇒ 5x2 = 5 =⇒ x2 = 1 =⇒ x = ±1.

Ker je y = 2x, dobimo točki

(1, 2) in (−1, −2).

Vrednosti funkcije f :

f(1, 2) = 1 + 2 · 2 = 5, f(−1, −2) = −1 + 2 · (−2) = −5.

Ker je množica {(x, y) : x2 + y2 = 5} kompaktna in je f zvezna, sta to
globalna ekstrema:

max f = 5 v točki (1, 2), min f = −5 v točki (−1, −2).

Rešitev.
Naj bo

f(x, y) = x2 + 2x + y2.

(a) Stacionarne točke in njihova klasifikacija.
Stacionarne točke dobimo iz pogoja

∇f(x, y) = 0.

Izračunamo parcialne odvode:

fx(x, y) = 2x + 2, fy(x, y) = 2y.
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Stacionarne točke dobimo iz sistema

2x + 2 = 0, 2y = 0,

torej
x = −1, y = 0.

Edina stacionarna točka je (−1, 0).
Za klasifikacijo uporabimo Hessejevo matriko:

Hf (x, y) =
(

fxx fxy

fyx fyy

)
=
(

2 0
0 2

)
.

Ker je determinanta pozitivna in fxx > 0 ima f v stacionarni točki
(−1, 0) lokalni minimum.

(b) Globalni ekstremi na krogu x2 + y2 ≤ 4.
Funkcija f je polinom, torej zvezna na R2. Množica {(x, y) | x2 +y2 ≤
4} je kompaktna (zaprta in omejena), zato f na tem krogu doseže
globalni minimum in globalni maksimum.
Najprej opazimo, da lahko funkcijo zapišemo v obliki

f(x, y) = x2 + 2x + y2 = (x + 1)2 + y2 − 1.

Iz tega je razvidno, da je globalni minimum v celotni ravnini dosežen
v točki (−1, 0), kjer je

f(−1, 0) = (−1 + 1)2 + 02 − 1 = −1.

Ker ta točka leži v notranjosti kroga x2 + y2 ≤ 4 (saj (−1)2 + 02 =
1 < 4), je (−1, 0) tudi globalni minimum na krogu.

Za maksimum preverimo rob kroga, to je krožnica

x2 + y2 = 4.

Na robu velja

f(x, y) = x2 + 2x + y2 = (x2 + y2) + 2x = 4 + 2x.

Na krožnici je torej vrednost funkcije odvisna le od x, in sicer

f(x, y) = 4 + 2x, kjer − 2 ≤ x ≤ 2.
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• Najmanjša možna vrednost na robu je pri x = −2:

f(−2, 0) = 4 + 2 · (−2) = 0.

• Največja možna vrednost na robu je pri x = 2:

f(2, 0) = 4 + 2 · 2 = 8.

Ker je najmanjša vrednost na robu 0, v notranjosti pa smo našli vred-
nost −1, je globalni minimum na krogu enak −1 in je dosežen v točki
(−1, 0). Največja vrednost na krogu je 8, dosežena v točki (2, 0).

Sklep:

Edina stacionarna točka je (−1, 0) in je strogi lokalni minimum.

Globalni minimum na krogu: fmin = −1 v točki (−1, 0).

Globalni maksimum na krogu: fmax = 8 v točki (2, 0).

Dvojni integral

Dvojni integral definiramo podobno, kot smo definirali določen integral, s
pomočjo integralskih vsot:∫∫

D

f(x, y) dx dy = lim
p(Dk)→0

∑
k

f(xk, yk) p(Dk).

V primeru dvojnega integrala seštevamo prostornine posplošenih valjev.
Dvojni integral izračunamo s pomočjo dvakratnega integrala:∫∫

D

f(x, y) dx dy =
∫ b

a

(∫ h(x)

g(x)
f(x, y) dy

)
dx.

Primer. Naj bo D trikotnik z oglišči (0, 0), (1, 0) in (1, 1), torej

D = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.

Izračunajmo dvojni integral ∫∫
D

(x + y) dx dy.
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Ker je področje oblike

D = {(x, y) | a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

s
a = 0, b = 1, g(x) = 0, h(x) = x,

lahko pišemo ∫∫
D

(x + y) dx dy =
∫ 1

0

(∫ x

0
(x + y) dy

)
dx.

Najprej izračunamo notranji integral po y:∫ x

0
(x + y) dy =

∫ x

0
x dy +

∫ x

0
y dy = x

[
y
]x
0 +

[
y2

2

]x

0
= x · x + x2

2 = 3
2x2.

Zato dobimo∫∫
D

(x + y) dx dy =
∫ 1

0

3
2x2 dx = 3

2

[
x3

3

]1

0
= 3

2 · 1
3 = 1

2 .

Torej je ∫∫
D

(x + y) dx dy = 1
2 .

Funkcijske vrste
Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih
števil

a1, a2, a3, . . .

Kaj bi bila vsota neskončno členov tega zaporedja?

Številske vrste

Definicija. Naj bo {an} zaporedje realnih števil. Izraz

a1 + a2 + a3 + · · · =
∞∑

n=1
an

imenujemo številska vrsta (ali na kratko: vrsta), število an pa imenujemo
splošni člen vrste.
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S pomočjo členov zaporedja {an} definiramo novo zaporedje {sn} s členi

s1 = a1, s2 = a1 + a2, . . . , sn =
n∑

i=1
ai, . . .

ki jih imenujemo delne vsote.
Vrsta

∞∑
n=1

an

je konvergentna, če konvergira zaporedje njenih delnih vsot {sn}. Limito
zaporedja delnih vsot imenujemo vsota vrste. Če vrsta ni konvergentna,
potem pravimo, da je divergentna.

Funkcijske vrste

Definicija. Naj bo {f1, f2, . . . } števna množica realnih funkcij. Potem izraz

f1(x) + f2(x) + f3(x) + · · · =
∞∑

n=1
fn(x)

imenujemo funkcijska vrsta.
Za vsak x0 ∈ R, ki je v definicijskem območju vseh funkcij fn, n ∈ N, je

f1(x0) + f2(x0) + f3(x0) + · · · =
∞∑

n=1
fn(x0)

številska vrsta.
Če za nek x0 ta številska vrsta konvergira, potem pravimo, da je funkci-

jska vrsta konvergentna za ta x0, oziroma, da je x0 v definicijskem območju
funkcijske vrste.

Če za nek x0 številska vrsta divergira, potem pravimo, da je za ta x0
funkcijska vrsta divergentna; x0 ni v definicijskem območju funkcijske vrste.

Množica vseh vrednosti x, za katere je funkcijska vrsta konvergentna,
sestavlja definicijsko območje funkcijske vrste.

Primer

Dane so funkcije fn(x) = (sin x)n. Zanima nas konvergenca funkcijske vrste
∞∑

n=1
fn(x) =

∞∑
n=1

(sin x)n = sin x + (sin x)2 + (sin x)3 + . . .
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Če vpeljemo novo spremenljivko y = sin x, potem vidimo, da za vsako
vrednost spremenljivke x dobimo geometrijsko vrsto

∞∑
n=1

yn = y + y2 + y3 + . . . ,

ki konvergira, če je |y| < 1.
Torej mora biti

| sin x| < 1,

oziroma
x ̸= π

2 + kπ, k ∈ Z.

Funkcijska vrsta
∞∑

n=1
(sin x)n = sin x + (sin x)2 + (sin x)3 + . . .

konvergira za vsak x ∈ R, razen za

x = π

2 + kπ, k ∈ Z.

Potenčna vrsta

Definicija. Potenčna vrsta je funkcijska vrsta oblike

F (x) = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · =
∞∑

n=0
an(x − x0)n,

pri čemer je x0 ∈ R.

Kaj je s konvergenco potenčne vrste?
S pomočjo kvocientnega kriterija lahko določimo konvergenčno območje

potenčnih vrst.
Definicija. Če za potenčno vrsto ∑∞

n=0 an(x − x0)n obstaja

lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ ,
potem število

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
imenujemo konvergenčni polmer potenčne vrste.
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Izrek. Naj bo
∞∑

n=0
an(x − x0)n

potenčna vrsta in R njen konvergenčni polmer. Potem potenčna vrsta

• za vsak x ∈ (x0 − R, x0 + R) konvergira,

• za vsak x ∈ R \ [x0 − R, x0 + R] divergira,

Primer

Določimo konvergenčno območje za potenčne vrste:

1.
∞∑

n=1
(−1)n+1 xn

n
,

2.
∞∑

n=1

xn

n! ,

3.
∞∑

n=1
nxn.

Taylorjeva vrsta

Naj bo dana realna funkcija f , ki je v okolici točke 0 neskončnokrat odvedljiva.
Funkcijo f bi radi v okolici točke 0 aproksimirali s polinomom stopnje n.

Naj bo
pn(x) = an,0 + an,1x + an,2x2 + · · · + an,nxn

tak polinom n-te stopnje, za katerega velja, da se vsi njegovi odvodi v točki
0 ujemajo z odvodi funkcije f v točki 0, torej

p(i)
n (0) = f (i)(0), i = 0, 1, . . . , n.

Izračunamo:

p(0)
n (x) = pn(x) = an,0 + an,1x + an,2x2 + · · · + an,nxn,

p(1)
n (x) = p′

n(x) = an,1 + 2an,2x + 3an,3x2 + · · · + nan,nxn−1,

p(2)
n (x) = p′′

n(x) = 2an,2 + 3 · 2an,3x + · · · + n(n − 1)an,nxn−2,

...
p(n)

n (x) = n! an,n.
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Torej je

pn(0) = an,0 = f(0), p′
n(0) = an,1 = f ′(0), p′′

n(0) = 2an,2 = f ′′(0), . . . , p(n)
n (0) = n!an,n = f (n)(0).

Od tod dobimo

pn(x) = f(0) + f ′(0)x + f ′′(0)
2 x2 + · · · + f (n)(0)

n! xn =
n∑

i=0

f (i)(0)
i! xi.

Polinom
pn(x) =

n∑
i=0

f (i)(0)
i! xi

imenujemo Taylorjev polinom stopnje n, vrsto
∞∑

i=0

f (i)(0)
i! xi

pa Taylorjeva vrsta.
Če zaporedje polinomov pn konvergira proti funkciji f , dobimo

f(x) =
∞∑

n=0

f (n)(0)
n! xn.

Doblejene rezultate za razvoj funkcije v Taylorjevo vrsto okrog točke
0 lahko hitro posplošimo na rezultate o razvoju v Taylorjevo vrsto okrog
katere druge točke:

f(x) = f(x0) + f ′(x0)
1! (x − x0) + f ′′(x0)

2! (x − x0)2 + . . .

Taylorjeve vrste nekaterih elementarnih funkcij

1. Eksponentna funkcija f(x) = ex

Funkcijo f razvijemo v Taylorjevo vrsto tako, da izračunamo ustrezne odvode:

ex = 1 + x + x2

2! + x3

3! + · · · =
∞∑

n=0

xn

n! .

Konvergenčni polmer je R = ∞, torej vrsta konvergira za vsak x ∈ R.
Opomba. Za vrednost x = 1 dobimo

e = 1 + 1 + 1
2! + 1

3! + · · · =
∞∑

n=0

1
n! .
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2. Sinusna funkcija f(x) = sin x

sin x = x − x3

3! + x5

5! − x7

7! + · · · =
∞∑

n=0
(−1)n x2n+1

(2n + 1)! .

Konvergenčni polmer je R = ∞, torej vrsta konvergira za vsak x ∈ R.
Opomba. Sinus je liha funkcija, pri razvoju v Taylorjevo vrsto nastopajo

samo lihe potence.
Opomba. Za majhne vrednosti x je

sin x ≈ x.

Na primer:
sin 0,01 ≈ 0,00999983.

3. Kosinusna funkcija f(x) = cos x

cos x = 1 − x2

2! + x4

4! − x6

6! + · · · =
∞∑

n=0
(−1)n x2n

(2n)! .

Konvergenčni polmer je R = ∞, torej vrsta konvergira za vsak x ∈ R.
Opomba. Kosinus je soda funkcija, pri razvoju v Taylorjevo vrsto

nastopajo samo sode potence.
Opomba. Za majhne vrednosti x je

cos x ≈ 1 − x2

2 .

Na primer:
cos 0,01 ≈ 0,99995000041.

Opomba: Eulerjeva formula

Če v razvoju eksponentne funkcije f(x) = ex v Taylorjevo vrsto namesto x
vstavimo ix, dobimo

eix = 1 + ix − x2

2! − i
x3

3! + x4

4! + i
x5

5! − x6

6! + . . .

Torej je

eix =
(

1 − x2

2! + x4

4! − x6

6! + . . .

)
+ i

(
x − x3

3! + x5

5! − x7

7! + . . .

)
,

oziroma
eix = cos x + i sin x = exp(ix).
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4. Logaritemska funkcija f(x) = log(1 + x)

Ker funkcija log x v okolici x = 0 ni definirana, v Taylorjevo vrsto okrog
točke 0 razvijemo funkcijo f(x) = log(1 + x):

log(1 + x) = x − x2

2 + x3

3 − x4

4 + · · · =
∞∑

n=1
(−1)n+1 xn

n
.

Konvergenčni polmer je R = 1. Preverimo še krajišča intervala in dobimo,
da vrsta konvergira za vsak x ∈ (−1, 1].

S pomočjo razvoja funkcije f(x) = log(1 + x) v Taylorjevo vrsto lahko
izračunamo vrednosti logaritma za vsa realna števila na intervalu (0, 2].

Primer.

log 1,01 ≈ 0,00995033, log 2 ≈ 0,69314718.

5. Binomska vrsta, funkcija f(x) = (1 + x)α, α ∈ R \ {0}

Preden bomo lahko zapisali razvoj v Taylorjevo vrsto funkcije f(x) = (1 +
x)m, m ∈ R, moramo najprej definirati binomski simbol.

Spomnimo se:

(a + b)0 = 1,

(a + b)1 = a + b,

(a + b)2 = a2 + 2ab + b2,

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

(Pascalov trikotnik)(
m

k

)
+
(

m

k + 1

)
=
(

m + 1
k + 1

)
.

Za m ∈ N, k ∈ N ∪ {0}:(
m

k

)
= m!

k!(m − k)! = m(m − 1) . . . (m − k + 1)
k! .

Posplošimo na realne eksponente:(
α

k

)
= α(α − 1) . . . (α − k + 1)

k! , α ∈ R, k ∈ N ∪ {0}.
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Razvijmo sedaj funkcijo f(x) = (1 + x)α v Taylorjevo vrsto okrog točke
0:

(1 + x)α = 1 +
(

α

1

)
x +

(
α

2

)
x2 + · · · =

∞∑
n=0

(
α

n

)
xn.

Konvergenčni polmer je R = 1.
Primer. Razvijmo v Taylorjevo vrsto okrog točke 0 funkcijo

√
1 + x.



Chapter 7

Matrike

7.1 Osnovne definicije

Definicija. Matrika A velikosti m × n je pravokotna shema števil, sestavl-
jena iz m vrstic in n stolpcev:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 .

Opomba. Števila v matriki so lahko tudi kompleksna; množico vseh
kompleksnih matrik velikosti m×n označimo z Mm,n(C) ali na kratko Mm,n.

Matriko velikosti m × 1 imenujemo stolpčna matrika ali stolpec, matriko
velikosti 1 × n pa vrstična matrika ali vrstica:


a1
a2
...

am

 .

7.1.1 Posebne oblike matrik

Naj bo A ∈ Mn kvadratna matrika (n × n).
Diagonalna matrika. Če velja aij = 0 za vsak i ̸= j, pravimo, da je

89
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A diagonalna matrika:

A =


a11 0 . . . 0
0 a22 . . . 0
...

... . . . ...
0 0 . . . ann

 .

Če je A ∈ Mn diagonalna matrika, ki ima po diagonali same 1 (torej
aij = 1, če i = j, in aij = 0, če i ̸= j), jo imenujemo enotska matrika ali
identiteta:

I =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 .

Zgornjetrikotna in spodnjetrikotna matrika. Naj bo A ∈ Mn

kvadratna matrika.
Če velja aij = 0 za vsak i > j, pravimo, da je A zgornjetrikotna matrika:

A =


a11 a12 . . . a1n

0 a22 . . . a2n
...

... . . . ...
0 0 . . . ann

 .

Če velja aij = 0 za vsak i < j, pravimo, da je A spodnjetrikotna matrika:

A =


a11 0 . . . 0
a21 a22 . . . 0
...

... . . . ...
an1 an2 . . . ann

 .

7.1.2 Seštevanje in množenje s skalarjem

Na množici matrik iste velikosti lahko definiramo seštevanje in množenje s
skalarjem.

Naj bosta A = (aij) ∈ Mm,n in B = (bij) ∈ Mm,n. Potem je

A + B := (aij) + (bij) = (aij + bij).
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V matrični obliki:

A + B =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

+


b11 b12 . . . b1n

b21 b22 . . . b2n
...

... . . . ...
bm1 bm2 . . . bmn

 =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

... . . . ...
am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Seštevamo torej istoločnicne (istoležne) elemente.
Naj bo A = (aij) ∈ Mm,n in λ ∈ R. Potem je

λA := λ(aij) = (λaij),

tj.

λA = λ


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 =


λa11 λa12 . . . λa1n

λa21 λa22 . . . λa2n
...

... . . . ...
λam1 λam2 . . . λamn

 .

Nevtralni element za seštevanje je ničelna matrika

O =


0 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . 0

 ,

v kateri so vsi elementi enaki 0.
Lastnosti seštevanja matrik:

• A + B = B + A (komutativnost),

• (A + B) + C = A + (B + C) (asociativnost),

• A + O = A (ničelna matrika je nevtralni element),

• A + (−A) = O (vsaka matrika ima aditivni nasprotni element).

Lastnosti množenja matrik s skalarjem:
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• λ(A + B) = λA + λB (distributivnost),

• (λ + µ)A = λA + µA (distributivnost),

• (λµ)A = λ(µA) (asociativnost),

• 1 · A = A (1 je nevtralni element pri množenju s skalarjem).

7.1.3 Transponirana matrika

Naj bo A ∈ Mm,n matrika. Transponirana matrika matrike A je matrika
AT ∈ Mn,m, ki jo dobimo tako, da zamenjamo vlogi vrstic in stolpcev:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 =⇒ AT =


a11 a21 . . . am1
a12 a22 . . . am2
...

... . . . ...
a1n a2n . . . amn

 .

Velja:

• (A + B)T = AT + BT ,

• (λA)T = λAT .

Simetrična in poševno simetrična matrika. Naj bo A ∈ Mn

kvadratna matrika.

• Če velja A = AT , pravimo, da je A simetrična matrika.

• Če velja A = −AT , pravimo, da je A poševno simetrična matrika.

7.1.4 Adjungirana (konjugirano transponirana) matrika, her-
mitske matrike

Naj bo A ∈ Mn(C) kvadratna kompleksna matrika. Adjungirana matrika
(ali konjugirano transponirana matrika) matrike A je

A∗ := A
T

,

kjer A označuje matriko, v kateri vsak element aij zamenjamo z njegovim
kompleksnim konjugatom aij .

• Če velja A = A∗, pravimo, da je A hermitska matrika (tudi sebiadjun-
girana matrika).
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• Če velja A = −A∗, pravimo, da je A poševno hermitska matrika.

Trditev. Naj bo A ∈ Mn(C) hermitska matrika, tj. A = A∗. Potem so
diagonalni elementi realna števila: aii ∈ R za i = 1, . . . , n.

Naj bo A ∈ Mn(C) poševno hermitska matrika, tj. A = −A∗. Potem
imajo diagonalni elementi ničelni realni del: ℜ(aii) = 0 za i = 1, . . . , n.

Dokaz. Zapišimo adjungirano matriko kot A∗ = (aji).

• Če je A hermitska, torej A = A∗, veljajo enakosti elementov:

aij = aji za vse i, j.

Za diagonalo dobimo:
aii = aii.

Realno število je natanko takrat enako svojemu kompleksnemu konju-
gatu, zato je aii ∈ R.

• Če je A poševno hermitska, torej A = −A∗, velja

aij = −aji za vse i, j,

in za diagonalo
aii = −aii.

To je ekvivalentno
aii + aii = 0.

Ker je aii + aii = 2ℜ(aii), dobimo

2ℜ(aii) = 0 ⇒ ℜ(aii) = 0.

S tem sta obe trditvi dokazane.

Trditev 7.1.1. Za diagonalne elemente hermitske matrike velja, da so re-
alna števila. Torej, če za A ∈ Mn(C) velja A = A∗, potem je aii ∈ R,
i = 1, . . . , n.

Za diagonalne elemente poševno hermitske matrike velja, da so njihovi
realni deli enaki nič. Torej, če za A ∈ Mn(C) velja A = −A∗, potem je
ℜ(aii) = 0, i = 1, . . . , n.
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Definicija 7.1.2. Naj bo A ∈ Mm,n in B ∈ Mn,r. Potem definiramo pro-
dukt matrik A in B s predpisom

AB =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn




b11 · · · b1r

b21 · · · b2r
... . . . ...

bn1 · · · bnr

 =


a11b11 + a12b21 + · · · + a1nbn1 · · · a11b1r + · · · + a1nbnr

a21b11 + a22b21 + · · · + a2nbn1 · · · a21b1r + · · · + a2nbnr
... . . . ...

am1b11 + am2b21 + · · · + amnbn1 · · · am1b1r + · · · + amnbnr

 .

Če označimo C = AB, torej (cij) = (aij)(bij), potem je

cij = ai1b1j + ai2b2j + · · · + ainbnj =
n∑

k=1
aikbkj .

Opomba 7.1.3. Element cij , ki leži v i-ti vrstici in j-tem stolpcu matrike
AB, dobimo tako, da izračunamo skalarni produkt i-te vrstice matrike A in
j-tega stolpca matrike B.

Opomba 7.1.4. Produkt AB matrik A in B je definiran samo v primeru,
ko ima matrika A toliko stolpcev, kot ima matrika B vrstic. Če je torej
A ∈ Mm,n in B ∈ Mp,r, potem produkt AB obstaja samo, če je n = p.
Dobljena matrika AB je potem dimenzije m × r in zato element prostora
Mm,r.

Za množenje matrik veljajo naslednje lastnosti:

• (AB)C = A(BC) (asociativnost),

• A(B + C) = AB + AC (distributivnost),

• (B + C)A = BA + CA (distributivnost),

• v splošnem AB ̸= BA (ne velja komutativnost),

• iz AB = 0 ne sledi nujno, da je A = 0 ali B = 0.

Primer 7.1.5.
A =

(
0 1
0 0

)
, B =

(
0 −3
0 2

)
.

Izračunajmo A2, AB in BA.
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Naj bosta A, B ∈ Mn kvadratni matriki. Potem velja:

• (AB)T = BT AT ,

• AI = IA = A.

Definicija 7.1.6. Naj bo A ∈ Mn. Če obstaja taka matrika A−1 ∈ Mn, da
velja

AA−1 = A−1A = I,

potem pravimo, da je A obrnljiva ali nesingularna matrika in da je A−1

inverzna matrika matrike A.

Opomba 7.1.7. Za dano matriko A njena inverzna matrika ne obstaja
nujno. Na primer,

A =
(

0 1
0 0

)
je singularna, torej neobrnljiva. Kdaj je neka matrika nesingularna in kako
lahko izračunamo njen inverz, si bomo ogledali kasneje.

Trditev 7.1.8. Za inverz produkta matrik A, B ∈ Mn velja

(AB)−1 = B−1A−1.

Definicija 7.1.9. Naj bo A ∈ Mn. Če velja

AA∗ = A∗A = I,

potem pravimo, da je A unitarna matrika.

Unitarna realna matrika se imenuje ortogonalna matrika.

Opomba 7.1.10. Če je A ∈ Mn unitarna matrika, potem je A∗ inverzna
matrika matrike A.

Determinanta

Naj bo A ∈ Mn kvadratna matrika. Označimo z Aij ∈ Mn−1 kvadratno
matriko dimenzije (n − 1) × (n − 1), ki jo dobimo tako, da pri matriki A
izbrišemo i-to vrstico in j-ti stolpec.

Definicija 7.1.11. Determinanta, označimo jo z det, je preslikava iz pros-
tora Mn kvadratnih matrik dimenzije n × n v realna števila, torej determi-
nanta kvadratno matriko A ∈ Mn dimenzije n × n preslika v realno število
det A ∈ R.
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Determinanto lahko definiramo rekurzivno glede na dimenzijo n prostora
Mn s pomočjo razvoja, npr. po prvi vrstici:

• n = 1:
det(a11) = a11.

• n = 2:

det
(

a11 a12
a21 a22

)
= (−1)1+1a11 det A11+(−1)1+2a12 det A12 = a11a22−a12a21.

• n = 3:

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = (−1)1+1a11 det A11 + (−1)1+2a12 det A12 + (−1)1+3a13 det A13

= a11 det A11 − a12 det A12 + a13 det A13

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

• poljuben n:

det


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 =
n∑

j=1
(−1)1+ja1j det A1j .

Trditev 7.1.12. Determinanto matrike A ∈ Mn lahko izračunamo tako, da
jo razvijemo po katerikoli vrstici, torej

det A =
n∑

j=1
(−1)i+jaij det Aij .

Definicija 7.1.13. Število (−1)i+j det Aij imenujemo kofaktor elementa aij ,
ki leži v i-ti vrstici in j-tem stolpcu.

Opomba 7.1.14. Determinanto lahko označimo tudi na naslednji način:

det


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
.
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Opomba 7.1.15. Pri izračunu determinante velikosti 3 × 3 si lahko po-
magamo tudi s Sarrusovim pravilom. Prepišemo 2 stolpca in izračunamo 6
produktov “diagonal”. To pravilo velja samo za izračun determinante ma-
trike velikosti 3 × 3.

Opomba 7.1.16. Pri določanju pozitivnega in negativnega predznaka si
lahko pomagamo s “šahovnico”.

Opomba 7.1.17. Računanje determinante je časovno zelo potratno.

Lastnosti determinante

Naj bo A ∈ Mn kvadratna matrika dimenzije n × n.

• Determinanta se ne spremeni, če zamenjamo vlogo vrstic in stolpcev:

det A = det AT .

• Če pri kvadratni matriki zamenjamo dve vrstici, se determinanti spre-
meni predznak. Naj bo B ∈ Mn matrika, ki jo dobimo tako, da pri
matriki A zamenjamo k-to in l-to vrstico, k ̸= l. Potem je

det B = − det A.

• Če ima matrika A dve enaki vrstici ali dva enaka stolpca, potem je
det A = 0.

• Če pri matriki A vse elemente neke vrstice pomnožimo z istim faktor-
jem λ ∈ R, potem ima dobljena matrika determinanto, ki je za faktor
λ večja od prvotne.

• Če za kvadratno matriko A velja, da je njena k-ta vrstica večkratnik
l-te vrstice, potem je det A = 0.

• Če pri kvadratni matriki A katerikoli vrstici prištejemo katerokoli
drugo vrstico, potem ima dobljena kvadratna matrika B isto deter-
minanto kot A, torej det A = det B.

• Naj bo A zgornje trikotna matrika. Potem je njena determinanta
enaka produktu njenih diagonalnih elementov:

det


a11 a12 · · · a1n

0 a22 · · · a2n
...

... . . . ...
0 0 · · · ann

 = a11a22 · · · ann.
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• V posebnem primeru, ko je A diagonalna kvadratna matrika, je

det A = a11a22 · · · ann.

Opomba 7.1.18. Z upoštevanjem navedenih lastnosti lahko matriko pre-
oblikujemo do zgornje trikotne matrike, ki ima enako determinanto kot pr-
votna matrika, determinanta zgornje trikotne matrike pa je enaka produktu
diagonalnih elementov.

Determinanta ima tudi naslednjo pomembno lastnost, ki jo imenujemo
multiplikativnost.

Trditev 7.1.19. Naj bosta A, B ∈ Mn. Potem velja

det(AB) = det A · det B.

Posledica:
det A−1 = 1

det A
.

Dokaz. Ker je det I = 1, je

1 = det I = det(AA−1) = det A · det A−1,

torej
det A−1 = 1

det A
.

Izrek 7.1.20. Naj bo A ∈ Mn kvadratna matrika. Potem je A obrnljiva
matrika natanko tedaj, ko je

det A ̸= 0.

Drugače povedano, matrika A ∈ Mn je singularna natanko tedaj, ko je

det A = 0.

Z izračun determinante matrike dimenzije n × n je potrebno izračunati
n! produktov. Računanje determinante poskušamo poenostaviti z upošte-
vanjem različnih lastnosti determinante.
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Uporaba determinante

Determinanto srečamo pri zelo različnih temah, na primer:

• reševanje sistemov linearnih enačb,

• računanje inverznih matrik,

• preverjanje koplanarnosti vektorjev,

• računanje prostornine,

• računanje vektorskega produkta,

• preverjanje linearne neodvisnosti rešitev diferencialnih enačb,

• iskanje ekstremov funkcij več spremenljivk,

• računanje rotorja vektorskega polja,

• itd.

Rang matrike

Definicija 7.1.21. Rang matrike A ∈ Mm,n, ki ga označimo z rang A, je
dimenzija največje neničelne poddeterminante te matrike.

Opomba 7.1.22. Torej je rang A = k, če obstaja taka podmatrika Ak

dimenzije k × k, za katero je det Ak ̸= 0, za vsak l > k pa je det Al = 0 za
vsako podmatriko Al dimenzije l × l. Matrika ima rang 0, če so vsi njeni
elementi enaki nič.

Opomba 7.1.23. Rang je definiran tudi za pravokotne matrike. Velja

rang A ≤ min{m, n}.

Opomba 7.1.24. Matrika A ∈ Mn je nesingularna natanko tedaj, ko je
rang A = n. Matrika A ∈ Mn je singularna natanko tedaj, ko je rang A < n.

Ker smo rang matrike definirali s pomočjo determinante, hitro prever-
imo, da za rang matrike veljajo podobne lastnosti kot za determinanto:

• rang matrike se ne spremeni, če zamenjamo vlogo vrstic in stolpcev:

rang A = rang AT ,
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• če pri matriki zamenjamo dve vrstici, se rang ne spremeni. Naj bo
B ∈ Mn matrika, ki jo dobimo tako, da pri matriki A zamenjamo k-to
in l-to vrstico, k ̸= l. Potem je

rang B = rang A,

• če pri matriki A vse elemente neke vrstice pomnožimo z istim neničel-
nim faktorjem λ ∈ R, potem ima dobljena matrika enak rang kot
prvotna,

• če pri matriki A katerikoli vrstici prištejemo katerokoli drugo vrstico,
potem ima dobljena matrika B enak rang kot A, torej rang A = rang B,

• naj bo A “zgornje trikotna” matrika. Potem je njen rang enak številu
njenih neničelnih vrstic.

Opomba 7.1.25. Z upoštevanjem navedenih lastnosti lahko matriko pre-
oblikujemo do “zgornje trikotne” matrike, ki ima enak rang kot prvotna
matrika; rang “zgornje trikotne” matrike pa je enak številu neničelnih vrstic.

Linearna regresija (OLS). Naj imamo podatke (xi, yi) za i = 1, . . . , n
in linearni model

yi = β0 + β1xi + εi.

Označimo residuum pri i-tem podatku z

ri(β0, β1) = yi − (β0 + β1xi).

Metoda najmanjših kvadratov izbere parametra β0, β1 tako, da minimizira
vsoto kvadratov residuov

S(β0, β1) =
n∑

i=1
ri(β0, β1)2 =

n∑
i=1

(
yi − β0 − β1xi

)2
.

V matrični obliki zapišemo

y = Xβ + ε, X =


1 x1
1 x2
...

...
1 xn

 , β =
(

β0
β1

)
, y =

y1
...

yn

 .

Tedaj je vektor residuov
r(β) = y − Xβ,

in funkcija, ki jo minimiziramo, je

∥y − Xβ∥2 = (y − Xβ)T (y − Xβ).
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Izpeljava normalnih enačb z delnimi odvodi (komponentno)

Začnimo s skalarno funkcijo

S(β0, β1) =
n∑

i=1
(yi − β0 − β1xi)2.

Parcialni odvod po β0. Za vsak člen uporabimo pravilo verige:

∂

∂β0
(yi − β0 − β1xi)2 = 2(yi − β0 − β1xi) · ∂

∂β0
(yi − β0 − β1xi).

Ker je
∂

∂β0
(yi − β0 − β1xi) = −1,

dobimo
∂

∂β0
(yi − β0 − β1xi)2 = −2(yi − β0 − β1xi).

Seštejemo po i:
∂S

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi).

V minimumu mora veljati ∂S
∂β0

= 0, zato

n∑
i=1

(yi − β0 − β1xi) = 0.

To preuredimo v
n∑

i=1
yi − nβ0 − β1

n∑
i=1

xi = 0,

torej

nβ0 + β1

n∑
i=1

xi =
n∑

i=1
yi. (E1)

Parcialni odvod po β1. Spet uporabimo pravilo verige:

∂

∂β1
(yi − β0 − β1xi)2 = 2(yi − β0 − β1xi) · ∂

∂β1
(yi − β0 − β1xi).

Ker je
∂

∂β1
(yi − β0 − β1xi) = −xi,
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dobimo
∂

∂β1
(yi − β0 − β1xi)2 = −2xi(yi − β0 − β1xi).

Seštejemo po i:
∂S

∂β1
= −2

n∑
i=1

xi(yi − β0 − β1xi).

V minimumu mora veljati ∂S
∂β1

= 0, zato
n∑

i=1
xi(yi − β0 − β1xi) = 0.

Razširimo:
n∑

i=1
xiyi − β0

n∑
i=1

xi − β1

n∑
i=1

x2
i = 0,

torej

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i =

n∑
i=1

xiyi. (E2)

Enačbi (E1) in (E2) sta normalni enačbi v komponentni obliki, v matrični
obliki jih zapišemo kot

XT X β̂ = XT y.

Če je rang(X) = 2, je matrika XT X obrnljiva in rešitev je enolična:

β̂ = (XT X)−1XT y.

Kdaj pade rang in zakaj tedaj rešitev ni enolična?

Matrika X ima stolpca 1
...
1

 in

x1
...

xn

 .

Velja rang(X) < 2 natanko tedaj, ko sta stolpca linearno odvisna, tj. ko
obstaja konstanta c, da je

(x1, . . . , xn)T = c(1, . . . , 1)T ,

kar pomeni
x1 = x2 = · · · = xn.

V tem primeru naklona β1 ne moremo enolično določiti, zato rešitev prob-
lema najmanjših kvadratov ni enolična.
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Slučajni vektorji

Diskretni slučajni vektor

Definicija 8.0.1. Za gostoto verjetnosti fXY (x, y) slučajnega vektorja diskret-
nih spremenljivk (X, Y ) velja:

• fXY (x, y) ≥ 0,

•
∑

x

∑
y

fXY (x, y) = 1,

• fXY (x, y) = P[X = x, Y = y].

Če so možne vrednosti X in Y podane z {xi} in {yk}, pogosto pišemo

fXY (xi, yk) = pik.

Posamezne verjetnosti (marginali)

Definicija 8.0.2. Naj bo fXY (x, y) skupna gostota slučajnega vektorja
diskretnih spremenljivk (X, Y ). Potem sta posamezni gostoti (marginali)
diskretnih slučajnih spremenljivk X in Y :

fX(x) = P[X = x] =
∑

y

fXY (x, y), fY (y) = P[Y = y] =
∑

x

fXY (x, y).

V zapisu pik (za x = xi, y = yk) dobimo:

pi· = P[X = xi] =
∑

k

pik, p·k = P[Y = yk] =
∑

i

pik.
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Pričakovana vrednost in varianca

Trditev 8.0.3.

E(X) = µX =
∑

x

xfX(x) =
∑

x

x
(∑

y

fXY (x, y)
)

=
∑

x

∑
y

x fXY (x, y).

V (X) = σ2
X =

∑
x

(x − µX)2fX(x) =
∑

x

∑
y

(x − µX)2fXY (x, y).

Analogno velja za E(Y ) in V (Y ).

Pogojna gostota

Definicija 8.0.4. Naj bo fXY (x, y) skupna gostota. Pogojna gostota (pogo-
jna porazdelitev) diskretne slučajne spremenljivke Y pri pogoju X = x je

fY |x(y) = P[Y = y | X = x] = fXY (x, y)
fX(x) , za fX(x) > 0.

Neodvisnost

Trditev 8.0.5. Diskretni slučajni spremenljivki X in Y sta neodvisni natanko
tedaj, ko velja katerakoli od naslednjih trditev:

• fXY (x, y) = fX(x)fY (y) za vse x, y,

• fY |x(y) = fY (y) za vse x, y z fX(x) > 0,

• fX|y(x) = fX(x) za vse x, y z fY (y) > 0,

• P[X ∈ A, Y ∈ B] = P[X ∈ A] P[Y ∈ B] za vse množice A, B.

Opomba 8.0.6. Če množica točk z neničelno verjetnostjo dvorazsežne diskretne
slučajne spremenljivke (X, Y ) ne tvori pravokotnika, potem X in Y nista
neodvisni (pozitivna verjetnost ene spremenljivke omeji zalogo vrednosti
druge spremenljivke). Če množica točk z neničelno verjetnostjo tvori pra-
vokotnik, sta X in Y lahko neodvisni, vendar ne nujno (pravokotnik je
potreben, ni pa zadosten pogoj za neodvisnost).

Primer 8.0.7 (Skupna porazdelitev, marginali, pogojna verjetnost, (ne)neodvisnost).
Naj bo X ∈ {0, 1} in Y ∈ {0, 1} ter

p00 = 0.20, p01 = 0.30, p10 = 0.10, p11 = 0.40.
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Marginali:

fX(0) = p00 + p01 = 0.50, fX(1) = p10 + p11 = 0.50,

fY (0) = p00 + p10 = 0.30, fY (1) = p01 + p11 = 0.70.

Pogojna verjetnost:

P(Y = 1 | X = 0) = p01
fX(0) = 0.30

0.50 = 0.60.

Ker je P(Y = 1) = 0.70, velja P(Y = 1 | X = 0) ̸= P(Y = 1), zato X in Y
nista neodvisni. Ekvivalentno: p00 = 0.20 ̸= fX(0)fY (0) = 0.50 · 0.30 =
0.15.
Primer 8.0.8 (Skupna porazdelitev, marginali, pogojna verjetnost, neod-
visnost). Naj bo X ∈ {0, 1} in Y ∈ {0, 1} ter

p00 = 0.21, p01 = 0.49, p10 = 0.09, p11 = 0.21.

Marginali:

fX(0) = p00 + p01 = 0.70, fX(1) = p10 + p11 = 0.30,

fY (0) = p00 + p10 = 0.30, fY (1) = p01 + p11 = 0.70.

Pogojna verjetnost:

P(Y = 1 | X = 0) = p01
fX(0) = 0.49

0.70 = 0.70.

Ker je P(Y = 1) = fY (1) = 0.70, velja P(Y = 1 | X = 0) = P(Y = 1).
Podobno dobimo tudi P(Y = 1 | X = 1) = 0.70, zato sta X in Y neodvisni.

Ekvivalentno: za vse x, y ∈ {0, 1} velja

pxy = fX(x)fY (y),

npr. p00 = 0.21 = 0.70 · 0.30 in p11 = 0.21 = 0.30 · 0.70.

Diskretni slučajni vektor z n komponentami

Definicija 8.0.9. Gostota verjetnosti n-razsežne diskretne slučajne spre-
menljivke (X1, . . . , Xn) je

fX1···Xn(x1, . . . , xn) = P[X1 = x1, . . . , Xn = xn].

Trditev 8.0.10. Diskretne slučajne spremenljivke X1, . . . , Xn so neodvisne
natanko tedaj, ko velja

fX1···Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn).
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Multinomska slučajna spremenljivka

Definicija 8.0.11. Multinomska verjetnostna porazdelitev je posplošitev
binomske porazdelitve. Denimo, da n-krat ponovimo poskus:

• rezultat vsakega poskusa pripada enemu izmed k razredov,

• rezultat poskusa je v i-tem razredu z verjetnostjo pi, i = 1, . . . , k,

• poskusi so med seboj neodvisni,

• p1 + · · · + pk = 1.

Naj Xi označuje število poskusov, ki so v i-tem razredu. Potem velja

P[X1 = x1, . . . , Xk = xk] = n!
x1! · · · xk! px1

1 · · · pxk
k ,

kjer je x1 + · · · + xk = n.

Primer 8.0.12 (Transport elektronskih naprav). Pri transportu elektron-
skih naprav so se 4 naprave prevrnile. V preteklosti je imelo 60% prevrnjenih
naprav večje poškodbe, 30% manjše poškodbe, 10% pa ni bilo poškodovanih.

• Kolikšna je verjetnost, da imata 2 večje poškodbe in 2 manjše poškodbe?

Naj bo p1 = 0.6, p2 = 0.3, p3 = 0.1, n = 4 in (x1, x2, x3) = (2, 2, 0):

P = 4!
2! 2! 0!(0.6)2(0.3)2(0.1)0 = 6 · 0.36 · 0.09 = 0.1944.

• Kolikšna je verjetnost, da nobena naprava ni poškodovana?

To pomeni (x1, x2, x3) = (0, 0, 4), zato

P = (0.1)4 = 0.0001.

Slučajni vektorji zveznih spremenljivk

Definicija 8.0.13. Za gostoto verjetnosti fXY (x, y) slučajnega vektorja
zveznih spremenljivk (X, Y ) velja:

• fXY (x, y) ≥ 0,

•
∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) dx dy = 1,
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• za vsako območje R v ravnini:

P[(X, Y ) ∈ R] =
∫∫

R
fXY (x, y) dx dy.

Opomba 8.0.14 (Posamezne gostote in pričakovanja). Posamezni gostoti
(marginali) dobimo z integriranjem po drugi spremenljivki:

fX(x) =
∫ ∞

−∞
fXY (x, y) dy, fY (y) =

∫ ∞

−∞
fXY (x, y) dx.

Za poljubno funkcijo g velja

E
[
g(X, Y )

]
=
∫ ∞

−∞

∫ ∞

−∞
g(x, y) fXY (x, y) dx dy,

posebej

E(X) =
∫∫

x fXY (x, y) dx dy, E(Y ) =
∫∫

y fXY (x, y) dx dy, E(XY ) =
∫∫

xy fXY (x, y) dx dy.

Definicija 8.0.15 (Neodvisnost zveznih slučajnih spremenljivk). Zvezni
slučajni spremenljivki X in Y sta neodvisni, če za vsaki (Borelovi) množici
A, B ⊂ R velja

P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B).

Trditev 8.0.16 (Ekvivalentne karakterizacije). Naj ima par (X, Y ) skupno
gostoto fXY (x, y) in marginali fX(x), fY (y). Potem so naslednje trditve
ekvivalentne:

• X in Y sta neodvisni.

• Skupna gostota se faktorira:

fXY (x, y) = fX(x) fY (y) za vse x, y.

• Pogojna gostota je enaka marginalni (kjer je fX(x) > 0):

fY |X=x(y) = fY (y) za vse x, y.

• Skupna porazdelitvena funkcija se faktorira:

FXY (x, y) = P(X ≤ x, Y ≤ y) = FX(x) FY (y) za vse x, y.
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Definicija 8.0.17 (Pogojna gostota (zvezni primer)). Naj imata (X, Y )
skupno gostoto fXY (x, y) in naj bo marginalna gostota

fX(x) =
∫ ∞

−∞
fXY (x, y) dy.

Če je fX(x) > 0, potem je pogojna gostota slučajne spremenljivke Y pri
pogoju X = x definirana z

fY |X=x(y) = fXY (x, y)
fX(x) .

Pogojna porazdelitvena funkcija je

FY |X=x(y) = P(Y ≤ y | X = x) =
∫ y

−∞
fY |X=x(t) dt.

Primer 8.0.18 (Neodvisnost preko faktorizacije gostote). Naj bosta X ∼
Unif(0, 1) in Y ∼ Unif(0, 1) neodvisni. Tedaj je

fXY (x, y) =
{

1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, sicer,

in marginali sta

fX(x) =
∫ ∞

−∞
fXY (x, y) dy =

{
1, 0 ≤ x ≤ 1,

0, sicer,
fY (y) =

{
1, 0 ≤ y ≤ 1,

0, sicer.

Ker velja fXY (x, y) = fX(x)fY (y), sta X in Y neodvisni. Na primer,

P(X ≤ 1
2 , Y ≤ 1

3) =
∫ 1/2

0

∫ 1/3

0
1 dy dx = 1

6 = P(X ≤ 1
2) P(Y ≤ 1

3).

Primer 8.0.19 (Odvisnost zaradi podpore, ki ni pravokotnik). Naj bo
X enakomerno porazdeljena na (0, 1), pri pogoju X = x pa naj bo Y
enakomerno porazdeljena na (0, x). Tedaj je skupna gostota (po Definiciji
8.0.17)

fXY (x, y) =
{ 1

x , 0 < y < x < 1,

0, sicer.

Preverimo, da je to res gostota: fXY (x, y) ≥ 0 in∫∫
R2

fXY (x, y) dy dx =
∫ 1

0

∫ x

0

1
x

dy dx =
∫ 1

0

1
x

[
y
]x

0
dx =

∫ 1

0
1 dx = 1.
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Zato fXY res določa skupno porazdelitev.
Podpora {(x, y) : 0 < y < x < 1} je trikotnik (ni pravokotnik), zato X

in Y ne moreta biti neodvisni. Na primer,

P(Y ≤ 0.9 | X = 0.2) = 1, P(Y ≤ 0.9) =
∫ 1

0

∫ min(0.9,x)

0

1
x

dy dx < 1,

torej P(Y ≤ 0.9 | X = 0.2) ̸= P(Y ≤ 0.9).

Kovarianca in korelacija

Definicija 8.0.20 (Kovarianca). Naj bosta X in Y slučajni spremenljivki
z E(X) = µX in E(Y ) = µY . Kovarianca je definirana kot

cov(X, Y ) = σXY = E
[
(X − µX)(Y − µY )

]
= E(XY ) − µXµY .

Posebej velja cov(X, X) = V (X) = σ2
X .

Definicija 8.0.21 (Korelacija). Če sta σX > 0 in σY > 0, je korelacija
definirana kot

ρXY = cov(X, Y )√
V (X)V (Y )

= σXY

σXσY
.

Trditev 8.0.22. Velja
−1 ≤ ρXY ≤ 1.

Poleg tega je ρXY = 1 natanko tedaj, ko je Y = aX + b, a > 0 in ρXY = −1
natanko tedaj, ko je Y = aX + b, a < 0.

Opomba: neodvisnost ⇒ nekoreliranost. Če sta X in Y neodvisni in
imata končna pričakovanja, potem

E(XY ) = E(X) E(Y ),

zato

cov(X, Y ) = E(XY ) − E(X)E(Y ) = 0 ⇒ ρXY = 0 (če σX , σY > 0).

Zakaj obrat ne velja? (ideja in mini primer) Ni res, da cov(X, Y ) = 0
vedno pomeni neodvisnost. Na primer: naj bo X ∼ Unif(−1, 1) in Y = X2.
Tedaj Y ni neodvisna od X (ker Y je določena iz X), vendar:

cov(X, Y ) = E(XY )−E(X)E(Y ) = E(X3)−E(X) E(X2) = 0−0·E(X2) = 0,

ker je E(X) = 0 in zaradi simetrije E(X3) = 0. Torej sta X in Y nekoreli-
rani, a ne neodvisni.
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Primer 8.0.23 (Skupna porazdelitev in Z = 2X + 3Y ). Naj bo X ∈ {0, 1}
in Y ∈ {0, 1} ter

p00 = 0.20, p01 = 0.30, p10 = 0.10, p11 = 0.40.

Marginali:

P (X = 0) = 0.20 + 0.30 = 0.50, P (X = 1) = 0.10 + 0.40 = 0.50,

P (Y = 0) = 0.20 + 0.10 = 0.30, P (Y = 1) = 0.30 + 0.40 = 0.70.

Pričakovana vrednost. Ker je X, Y Bernoullijevi, dobimo

E(X) = P (X = 1) = 0.50, E(Y ) = P (Y = 1) = 0.70.

Definirajmo Z = 2X + 3Y . Tedaj

E(Z) = E(2X + 3Y ) = 2E(X) + 3E(Y ) = 2 · 0.50 + 3 · 0.70 = 3.10.

Varianca s pomočjo kovariance. Uporabimo formulo

Var(2X + 3Y ) = 4 Var(X) + 9 Var(Y ) + 12 cov(X, Y ).

Ker je X ∈ {0, 1}, velja

Var(X) = p(1 − p) = 0.5 · 0.5 = 0.25, Var(Y ) = 0.7 · 0.3 = 0.21.

Kovarianco izračunamo iz

cov(X, Y ) = E(XY ) − E(X)E(Y ).

Tu je XY = 1 natanko takrat, ko sta X = 1 in Y = 1, zato

E(XY ) = P (X = 1, Y = 1) = p11 = 0.40.

Sledi
cov(X, Y ) = 0.40 − (0.50)(0.70) = 0.40 − 0.35 = 0.05.

Zato

Var(Z) = 4 · 0.25 + 9 · 0.21 + 12 · 0.05 = 1 + 1.89 + 0.60 = 3.49.

Sklep: E(Z) = 3.10 in Var(Z) = 3.49.
Definicija 8.0.24 (Dvorazsežna normalna porazdelitev). Dvorazsežna nor-
malna porazdelitev ima gostoto

fXY (x, y) =

1
2πσXσY

√
1 − ρ2

XY

exp
(

− 1
2(1 − ρ2

XY )

(
(x − µX)2

σ2
X

− 2ρXY (x − µX)(y − µY )
σXσY

+ (y − µY )2

σ2
Y

))
.
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Geometrija korelacije pri dvorazsežni normalni porazdelitvi

Naj bo (X, Y ) dvorazsežno normalno porazdeljena s povprečjem

µ =
(

µX

µY

)

in kovariančno matriko

Σ =
(

σ2
X σXY

σXY σ2
Y

)
=
(

σ2
X ρ σXσY

ρ σXσY σ2
Y

)
, −1 < ρ < 1.

Po standardizaciji

Z1 = X − µX

σX
, Z2 = Y − µY

σY
,

dobimo Z = (Z1, Z2)T ∼ N (0, R), kjer je korelacijska matrika

R =
(

1 ρ
ρ 1

)
.


